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Abstract

This paper studies difference-in-differences (DiD) setups with repeated cross-sectional
data and potential compositional changes across time periods. We begin our analysis by
deriving the efficient influence function and the semiparametric efficiency bound for the
average treatment effect on the treated (ATT). We introduce nonparametric estimators
that attain the semiparametric efficiency bound under mild rate conditions on the esti-
mators of the nuisance functions, exhibiting a type of rate doubly-robust (DR) property.
Additionally, we document a trade-off related to compositional changes: We derive the
asymptotic bias of DR DiD estimators that erroneously exclude compositional changes
and the efficiency loss when one fails to correctly rule out compositional changes. We
propose a nonparametric Hausman-type test for compositional changes based on these
trade-offs. The finite sample performance of the proposed DiD tools is evaluated through
Monte Carlo experiments and an empirical application. As a by-product of our analysis,
we present a new uniform stochastic expansion of the local polynomial multinomial logit
estimator, which may be of independent interest.
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1 Introduction

Difference-in-differences (DiD) designs have been used widely for identifying and estimating
causal effects with observational data. Identification in this research design typically relies on
a conditional parallel trends assumption stipulating that conditional on a set of covariates, the
average untreated outcomes among treated and comparison groups would have evolved “in par-
allel”. When one pairs this assumption with common support and no-anticipation assumptions,
it is easy to establish that the average treatment effect on the treated (ATT) is nonparametri-
cally identified when panel data is available. When one only observes repeated cross-sectional
data, it is common to impose further a no-compositional change assumption, also known as
the stationarity assumption. This is the case in the widely cited DiD procedures of Heckman,
Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020), and Callaway and
Sant’Anna (2021), for example.

Although we have seen a lot of recent developments in DiD methods (see Roth, Sant’Anna,
Bilinski and Poe, 2023 for an overview of recent DiD developments), little attention has been
paid to understanding the importance and limitations of the no-compositional changes assump-
tion. This paper aims to fill this gap by providing researchers with new tools that can be used
when they are in doubt about such an assumption and/or to test its plausibility.

Before discussing the paper’s contributions, it is worth stressing why ruling out composi-
tional changes across time periods can be restrictive in real empirical applications. Essentially,
the no-compositional changes assumption requires one to sample observations from the same
population across time periods, which can be unrealistic in some scenarios. For example, Hong
(2013) studies the effect of Napster on recorded music sales. He uses data from the 1996–2002
Interview Surveys of the Consumer Expenditure Survey. Over this period, the composition of
internet users has changed substantially. The early adopters tend to be younger, richer, more
educated, and technically savvy, whereas later adopters exhibit a higher diversity level in demo-
graphics. If one ignores such imbalances of group composition across time, the (negative) effect
of Napster on music sales can be overestimated, as the decrease in the average music expendi-
ture may be attributed to a post-Napster group with more households having low reservation
prices for recorded music. Other applications also share this concern, as discussed below and in
more detail in Section 6. Therefore, having causal inference tools that can assess if the findings
are robust against compositional changes in the sample is of practical interest.

We begin our analysis by showing that one can identify the ATT in DiD setups without
invoking the no-compositional changes assumption. We derive the efficient influence function
and the semiparametric efficiency bound for the ATT in this scenario. We then form generic
nonparametric estimators built on the efficient influence function that can achieve the semipara-
metric efficient bound under mild smoothness conditions, a rate doubly-robust (DR) property
(Smucler, Rotnitzky and Robins, 2019). These results are general and do not rely on a specific
choice of estimators for nuisance functions. Nonetheless, they do not help us with practical in-
ference procedures. For that, we use a local polynomial estimator for the outcome-regressions
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models and the local multinomial logit regression to estimate the generalized propensity score,
the latter of which is fairly new in the DiD literature. Importantly, our nonparametric esti-
mators can accommodate both discrete and continuous covariates, and all tuning parameters
are selected in a data-driven way via cross-validation.1 Finally, we show that the estimand
proposed by Sant’Anna and Zhao (2020) is no longer DR in this DiD setup with compositional
changes. In fact, we show that even when all nuisance functions are correctly specified, the
Sant’Anna and Zhao (2020)’s DR DiD estimand does not identify the ATT in this general
setup. Overall, this first set of results highlights what is “the best” that one can do in DiD
setups with compositional changes.

Next, we tackle the problem of how much efficiency one may lose by not exploring the no-
compositional change assumption when it is valid. To answer this question, we compare our
derived semiparametric efficiency bound that does not impose the no-compositional changes
assumption with the semiparametric efficiency bound derived by Sant’Anna and Zhao (2020)
that fully exploits it. As expected, the extra layer of robustness comes at the cost of loss
of efficiency. Heuristically speaking, the no-compositional change assumption allows one to
pool the covariate data from all time periods, substantially increasing the effective sample
size and the precision of the DiD estimator compared to the one that does not impose the
no-compositional change assumption.

In practice, determining whether compositional changes are a significant concern for a given
empirical application is not always obvious. Specifically, it is unclear whether imposing a no-
compositional change assumption will lead to biased ATT estimates. Using our previous results,
we propose a nonparametric Hausman (1978)-type test for no-compositional changes. The test
compares our nonparametric DiD estimator of the ATT, which is robust against compositional
changes, with the nonparametric extension of Sant’Anna and Zhao (2020)’s DR DiD estimator,
which assumes no compositional changes. We derive the large sample properties of the proposed
test, which shows that it controls size asymptotically and is consistent against a broad set of
alternatives.

We demonstrate the practical appeal of our proposed DiD tools through Monte Carlo sim-
ulations and an empirical application that revisits Sequeira (2016). She leverages a quasi-
experimental variation created by a large reduction in the average nominal tariff rate between
South Africa and Mozambique in 2008 to study the causal effect of tariff rate reduction on
trade costs and corruption behavior using a two-way fixed effects specification with covariates
that implicitly imposes a no-compositional changes assumption, among other arguably unnec-
essary homogeneity assumptions. We use our nonparametric tests to assess the plausibility
of the no-compositional changes assumption and fail to reject it at the usual significance lev-
els. Our results support the conclusions by Sequeira (2016) that tariff liberalization decreases
corruption, and our DR DiD estimates are similar to those in the original paper.

1 As a side contribution of this paper, we provide a new result on the uniform expansion of the local (multi-
nomial) logit estimators, which accommodates both continuous and discrete variables. This result may be of
independent interest.
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Related literature: This article belongs to the extensive literature on semiparametric
DiD methods. We refer the reader to Roth et al. (2023) for a synthesis of recent advances in
the econometrics of DiD. Within this broad literature, the paper closest to ours is Sant’Anna
and Zhao (2020), which proposes DR DiD estimators for the ATT and derives semiparametric
efficiency bound for such estimators, too. In sharp contrast to us, though, all the results in
Sant’Anna and Zhao (2020) rely on a no-compositional change assumption. Thus, our results
complement theirs. Furthermore, Sant’Anna and Zhao (2020)’s theoretical results rely on
parametric first-step estimators, while we accommodate nonparametric estimators. A perhaps
side and minor contribution of our paper is establishing the statistical properties of Sant’Anna
and Zhao (2020)’s DR DiD estimator with nonparametric estimates of the nuisance functions;
see also Chang (2020).

Our paper also relates to the causal inference literature on compositional changes over
time. Hong (2013) develops a matching-based estimator under a “selection-on-observable”-
type assumption, which is different and arguably stronger than our conditional parallel trends
assumption. Hong (2013) also does not discuss efficiency issues as we do. Stuart, Huskamp,
Duckworth, Simmons, Song, Chernew and Barry (2014) propose inverse probability weighted
estimators for the ATT in DiD setups under compositional changes. In contrast to us, their
estimator does not enjoy any DR property and may not attain the semiparametric efficiency
bound. Nie, Lu and Wager (2019) is also interested in DiD estimators under compositional
changes. Their estimator substantially differs from ours: they use meta-learners and cross-
fitting to estimate nuisance functions, while our estimator is based on the efficient influence
function for the ATT. When treatment effects are heterogeneous, their estimators do not target
the ATT but the ATE, which, in our context, is not identified. They do not consider tests for
the no-compositional changes assumption as we do.

Finally, we contribute to the semiparametric two-stage estimation that depends on non-
parametrically estimated functions. See, e.g., Newey (1994), Chen, Linton and Van Keilegom
(2003), Chen, Hong and Tarozzi (2008), Ackerberg, Chen, Hahn and Liao (2014), Rothe and
Firpo (2019), among many others. Our results on local multinomial logit regression builds on
Fan, Heckman and Wand (1995), Claeskens and Van Keilegom (2003), Li and Ouyang (2005),
and Kong, Linton and Xia (2010). The novel result on the uniform expansion of the local
multinomial logit estimator may be of independent interest.

Organization of the paper: Section 2 introduces the identification framework of the
DiD parameter under compositional changes, presents the semiparametric efficiency results,
and discusses the bias-variance trade-off of ruling out compositional changes. In Section 3, we
present our nonparametric DR DiD estimators, discuss their large sample properties, and how
to pick tuning parameters. Section 4 discusses a test for no-compositional changes. Monte Carlo
simulations are provided in Section 5, and an empirical illustration is considered in Section 6.
Section 7 concludes. Proofs and additional results are reported in the Supplemental Appendix
available here.
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2 Difference-in-Differences

2.1 Framework

This section describes our setup. We focus on the canonical two-period and two-group
setup for conciseness and transparency. We have two time periods, t “ 0, where no unit is
exposed to the treatment, and time t “ 1, where units in the group with D “ 1 are exposed to
treatment; here, D is a binary treatment indicator. We adopt the potential outcome notation
where Yit p0q and Yit p1q denote the untreated and treated potential outcome for unit i at time t,
respectively. Observed outcomes are given by Yit “ DitYitp1q` p1´DitqYitp0q. We also assume
that a k-dimensional vector of pre-treatment characteristics Xi P X Ď Rk is available.

This paper considers the case where one has access to repeated cross-sectional data. To
formalize this idea, let Ti be a dummy variable that takes value one if the observation i is
observed only in the post-treatment period t “ 1, and zero if observation i is only observed
in the pre-treatment period t “ 0. Define Yi “ TiYi1 ` p1´ TiqYi0, and let n1 and n0 be the
sample sizes of the post-treatment and pre-treatment periods such that n “ n1 ` n0.

Assumption 1 (Sampling) The pooled data tYi, Di, Xi, Tiu
n
i“1 consists of independent and

identically distributed draws from the mixture distribution

P pY ď y,D “ d,X ď x, T “ tq “ t ¨ P pT “ 1q ¨ P pY1 ď y,D “ d,X ď x|T “ 1q

` p1´ tq ¨ P pT “ 0qP pY0 ď y,D “ d,X ď x|T “ 0q ,

where py, d, x, tq P Y ˆ t0, 1u ˆ X ˆ t0, 1u .

Assumption 1 allows for different sampling schemes. For instance, it accommodates the
binomial sampling scheme where an observation i is randomly drawn from either pY1, D,Xq or
pY0, D,Xq with a fixed probability. It also accommodates the “conditional” sampling scheme
where n1 observations are sampled from pY1, D,Xq, n0 observations are sampled from pY0, D,Xq
and P pT “ 1q “ n1{n (here, T is treated as fixed). Importantly, Assumption 1 does not impose
that we are sampling from the same underlying distribution across time periods, implying that
it is fully compatible with compositional changes (Hong, 2013). This is in contrast to most of
the DiD literature. For example, Assumption 1(b) in Sant’Anna and Zhao (2020) explicitly
imposes that pD,Xq KK T ; see also Heckman et al. (1997), and Abadie (2005) for other DiD
procedures that rely on this stationarity condition.

As is typical in DiD setups, we are interested in the average treatment effect in time period
t “ 1 among the treated units,

ATT “ τ “ E rY1 p1q |D “ 1, T “ 1s ´ E rY1 p0q |D “ 1, T “ 1s . (2.1)

Given that the untreated potential outcome Yi1p0q is never observed for the treated units,
we need to impose assumptions to uncover E rY1 p0q |D “ 1, T “ 1s from the data. We make
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conditional parallel trends, no-anticipation, and strong overlap assumptions toward this goal.
Let S ” t0, 1u2 and S´ ” tp1, 0q, p0, 1q, p0, 0qu.

Assumption 2 (Conditional Parallel Trends, No-Anticipation, and Overlap)
For some ε ą 0, pd, tq P S´, and for all x P X

piq ErY1p0q|D “ 1, T “ 1, X “ xs ´ ErY0p0q|D “ 1, T “ 0, X “ xs

“ ErY1p0q|D “ 0, T “ 1, X “ xs ´ ErY0p0q|D “ 0, T “ 0, X “ xs.

piiq ErY0p0q|D “ 1, T “ 0, X “ xs “ ErY0p1q|D “ 1, T “ 0, X “ xs.

piiiq P pD “ 1, T “ 1q ą ε and P pD “ d, T “ t|X “ xq ě ε.

Assumption 2(i) is the conditional parallel trends assumption (CPT) stating that condi-
tioning on X, the average evolution of the untreated potential outcome is the same among the
treated and untreated groups. This assumption allows for covariate-specific trends and does
not restrict the trends among different covariate strata. Assumption 2(ii) is a no-anticipation
assumption (NAA) stating that, on average, treated units do not act on the future treatment
prior to its implementation (Abbring and van den Berg, 2003; Malani and Reif, 2015). As-
sumption 2(iii) is an overlap condition that guarantees that there are some treated units in the
post-treatment period and that the covariates do not fully determine treatment status. This
condition is crucial for guaranteeing nonparametric regular inference procedures (Khan and
Tamer, 2010).

2.2 Identification and semiparametric efficiency bound

Under Assumptions 1 and 2, it is straightforward to show that the ATT is nonparametrically
identified by the outcome regression estimand2

τ “ τor ” E rY |D “ 1, T “ 1s ´ E rm1,0pXq `m0,1pXq ´m0,0pXq|D “ 1, T “ 1s , (2.2)

where md,tpxq “ ErY |D “ d, T “ t,X “ xs. Alternatively, it is also easy to show that one can
identify the ATT using an inverse probability weighted estimand

τ “ τipw ” E rpw1,1pD,T q ´ w1,0pD,T,Xq ´ w0,1pD,T,Xq ` w0,0pD,T,XqqY s , (2.3)

where, for pd, tq P S´

w1,1pD,T q “
DT

ErDT s
,

wd,tpD,T,Xq “
Id,t ¨ pp1, 1, Xq

ppd, t,Xq

N

E
„

Id,t ¨ pp1, 1, Xq

ppd, t,Xq



, (2.4)

Id,t “ 1tD “ d, T “ tu, and ppd, t, xq “ P pD “ d, T “ t|X “ xq is a so-called generalized
propensity score. Notice that the weights in (2.4) are of the Hájek (1971)-type. This guarantees

2 See Lemma A.1 in Appendix A for the formalization of these results.
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that all the weights sum up to one and typically results in more stable finite sample behavior;
see, e.g., Millimet and Tchernis (2009); Busso, Dinardo and McCrary (2014); Sant’Anna and
Zhao (2020).

From (2.2) and (2.3), it is clear that any linear combination of τor and τipw also identifies
the ATT under our assumptions. There are also many other potential estimands that make
use of nonlinear combinations of the different terms in τor and τipw and identify the ATT.
From this simple observation, a natural question that arises is: How can we combine these
two strategies to obtain an efficient estimator for the ATT? The next theorem addresses this
question through the lens of semiparametric efficiency theory. Specifically, we derive the efficient
influence function for the ATT under Assumptions 1 and 2, as well as its semiparametric
efficiency bound. This bound represents the maximum precision achievable in this context under
the given assumptions. As so, it provides a benchmark that researchers can use to assess whether
any given (regular) semiparametric DiD estimator for the ATT fully exploits the empirical
content of Assumptions 1 and 2.3 Hereafter, let τpY,Xq “ Y ´pm1,0pXq`pm0,1pXq´m0,0pXqqq

and W “ pY,D,X, T q. We also denote the ATT by τ .

Theorem 1 (Semiparametric Efficiency Bound) Suppose Assumptions 1 and 2 hold. Then,
the efficient influence function for τ is given by

ηeffpW q “ w1,1pD,T qpτpY,Xq ´ τq `
ÿ

pd,tqPS´

p´1qpd`tqwd,tpD,T,XqpY ´md,tpXqq, (2.5)

where the weights are defined in (2.4). Furthermore, the semiparametric efficiency bound for
the set of all regular estimators of τ is

ErηeffpW q2s “
1

E rDT s2
E

»

–DT pτpY,Xq ´ τq2 `
ÿ

pd,tqPS´

Id,t ¨ pp1, 1, Xq
2

ppd, t,Xq2
pY ´md,tpXqq

2

fi

fl .

Apart from providing an efficiency benchmark, Theorem 1 also provides us a template to
construct efficient estimators for τ . That is, given that any influence function has a mean of
zero, we can take the expected value of ηeffpW q and isolate τ to get the following estimand for
the ATT

τ “ τdr ” E

»

–w1,1pD,T qτpY,Xq `
ÿ

pd,tqPS´

p´1qpd`tqwd,tpD,T,XqpY ´md,tpXqq

fi

fl . (2.6)

Note that we can rewrite τdr as the τor estimand augmented with IPW terms that weight
the errors of the regression of Y on X among subgroups defined by pd, tq P S´, that is,

τdr “ τor `
ÿ

pd,tqPS´

p´1qpd`tq E rwd,tpD,T,XqpY ´md,tpXqqs .

3 To simplify exposition, we abstract from additional technical discussions related to the conditions to guarantee
quadratic mean differentiability and their implications for the precise definition of efficient influence function;
see, e.g., Chapter 3 of Bickel, Klaassen, Ritov and Wellner (1998) for more details.
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Alternatively, one can rewrite τdr as the τipw estimand augmented with re-weighted outcome
regression terms.

τdr “ τipw `
ÿ

pd,tqPS´

p´1qpd`tq E rpw1,1pD,T q ´ wd,tpD,T,Xqqmd,tpXqs .

These alternative representations of the ATT estimand based on the efficient influence func-
tion highlight that combining IPW and OR approaches can lead to efficiency gains. In addition,
these representations suggest that τdr possesses the so-called “doubly robust” property, which
allows for recovering the ATT, as long as one correctly specifies a model for the generalized
propensity score or a model for the outcome regressions. In a nonparametric world, these DR
properties can be interpreted as “rate doubly robustness” as shown in Section 3.1; see also
Smucler et al. (2019).

2.3 Bias-Variance trade-off with respect to stationarity

All the estimands described in Section 2.2 account for compositional changes over time, and
the τdr estimand (2.6), based on the efficient influence function, inherit efficiency properties
under our assumptions. As mentioned in the introduction, most DiD estimators typically
assume no compositional changes a priori. A natural question then arises: How biased would
these estimators be when they erroneously rule out compositional changes?

To tackle this question, we examine the bias of the semiparametrically efficient DiD estima-
tor for the ATT proposed by Sant’Anna and Zhao (2020) that excludes compositional changes.
Before diving into this analysis, we need to introduce some additional notation and clarify the
assumptions, estimands, and other aspects of Sant’Anna and Zhao (2020)’s approach.

First, Sant’Anna and Zhao (2020) explicitly rules out compositional changes by relying on
the following stationarity assumption.

Assumption 3 (Stationarity) pD,Xq KK T.

Intuitively, Assumption 3 enables researchers to pool covariates and treatment variables
from both time periods. As a result, under Assumption 3, it follows that E rD|X,T “ 1s “

E rD|Xs ” p̃pXq, which also affects the definition of the “relevant” propensity score. Sant’Anna
and Zhao (2020) fully exploit these features and show that, under Assumptions 1, 2, and 3, the
efficient influence function for the ATT is given by

ηszpW q “
D

ErDs

ˆ

τpXq ´ τ

˙

`
ÿ

pd,tqPS

p´1qpd`tqwszd,tpD,T,XqpY ´md,tpXqq, (2.7)

where τpxq “ pm1,1pxq´m1,0pxqq´pm0,1pxq´m0,0pxqq is the conditional ATT, and for t “ 0, 1,

wsz1,t pD,T,Xq “
D ¨ 1tT “ tu

E rD ¨ 1tT “ tus
,

wsz0,t pD,T,Xq “
p̃pXq p1´Dq ¨ 1tT “ tu

1´ p̃pXq

N

E
„

p̃pXq p1´Dq ¨ 1tT “ tu

1´ p̃pXq



. (2.8)
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Based on (2.7), Sant’Anna and Zhao (2020) propose the following DR estimand for the
ATT:

τsz ” E

»

–

D

ErDs
τpXq `

ÿ

pd,tqPS

p´1qpd`tqwszd,tpD,T,XqpY ´md,tpXqq

fi

fl . (2.9)

The next proposition shows that τsz does not recover the ATT when Assumption 3 is
potentially violated, i.e., under compositional changes. It also precisely quantifies the bias
relative to τsz.

Proposition 1 Under Assumptions 1 and 2, we have that

τsz ´ τdr “
ÿ

pd,tqPS

p´1qpd`tq E
„ˆ

D

ErDs
´

DT

ErDT s

˙

md,tpXq



`
ÿ

pd,tqPS´

p´1qpd`tq E
“`

wszd,tpD,T,Xq ´ wd,tpD,T,Xq
˘

pY ´md,tpXqq
‰

“ErτpXq|D “ 1s ´ ErτpXq|D “ 1, T “ 1s

“ErτpXq|D “ 1s ´ τ.

Proposition 1 provides bias decomposition for τsz when the stationarity assumption is not
imposed. The first equality in Proposition 1 follows from a direct comparison between our
proposed estimand for the ATT and the one proposed by Sant’Anna and Zhao (2020), while
the second equality is a consequence of the law of iterated expectations.4 The third equality is
due to the definition of ATT and Assumptions 1 and 2. These calculations show that Sant’Anna
and Zhao (2020)’s DR DiD estimand for the ATT can be biased when Assumption 3 is violated.
In contrast, our proposed estimand τdr is fully robust against compositional changes.

Proposition 1 also highlights that not all violations of Assumption 3 result in biases in ATT
when using Sant’Anna and Zhao (2020)’s estimand. Although intuitive and simple, this insight
seems to be new in the literature. Based on this observation, one can determine if violations
of Assumption 3 lead to empirically relevant biases in the ATT by comparing nonparametric
estimates based on τsz with those based on our proposed estimand τdr. This would detect only
the “relevant” violations of Assumption 3 that affect the target parameter of interest. That is,
it would concentrate power in the directions that one cares about in this context. We discuss
this testing procedure in greater detail in Section 4.

At this point, one may also wonder what the price one pays for such robustness in terms
of semiparametric efficiency. Specifically, how much efficiency one loses by using τdr when As-
sumption 3 holds but is not fully exploited. The next proposition compares the semiparametric
efficiency bound derived in Theorem 1 with the one derived by Sant’Anna and Zhao (2020).

4 Here, we are implicitly considering the case where there are no (global) model misspecifications, which aligns
with the fully nonparametric approach we adopt. One can compute a similar bias decomposition when
one adopts parametric working models for the nuisance functions, though the notation becomes much more
cumbersome.
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Proposition 2 (Efficiency Loss under Stationarity) Suppose that Assumptions 1, 2, and 3
hold. Then

ρsz ” ErηeffpW q2s ´ ErηszpW q2s “
1´ ErT s
ErDsErT s

Var rτpXq|D “ 1s , (2.10)

It is evident from Proposition 2 that our proposed estimator is asymptotically less efficient
than the one proposed by Sant’Anna and Zhao (2020) when there are no compositional changes
over time. The efficiency loss is greater if any of the following three quantities is larger: 1) the
population ratio of the pre-treatment period vs. the post-treatment period, 2) the population
proportion of the comparison group vs. the treated group, and 3) the expected variability of
treatment effect heterogeneity among the treated. In the extreme case where the treatment
effect on the treated is homogeneous, our ATT estimator would achieve the same efficiency
level as the one that imposes stationarity a priori. However, we imagine this case is not very
realistic.

Propositions 1 and 2 characterize a bias-variance trade-off. Although our proposed estimand
for the ATT is robust against Assumption 3, there is an asymptotic efficiency loss of not
exploiting Assumption 3 when it does hold. We revisit this trade-off in Section 4.

3 Estimation and inference

The results from Section 2.2 suggest one can estimate the ATT by building on the efficient
influence function derived in Theorem 1, as emphasized by (2.6). The results from Propositions
1 and 2 also suggest a testing procedure to assess whether compositional changes translate to
biased ATT estimates. However, all the discussions so far has involved estimands that depend
on unknown nuisance functions, and we have not yet discussed how one can estimate these to
form feasible two-step estimators. This section discusses how to proceed when adopting a fully
nonparametric approach, therefore avoiding additional functional form assumptions.

We first present a generic result that emphasizes that estimators based on (2.6) have a
rate DR property, regardless of how you choose to (nonparametrically) estimate the nuisance
functions. Although interesting and useful, this generic result does not help us with practi-
cal inference procedures. Towards that end, we discuss how one can concretely estimate the
generalized propensity score (PS) and outcome regression (OR) nuisance functions using local
polynomials, even in the presence of discrete covariates. We then establish the large sample
properties of our DR DiD two-step estimator for the ATT based on local polynomials. We pro-
vide a data-driven bandwidth selection method in Subsection 3.4. We defer the construction of
the Hausman-type test for compositional changes to Section 4.
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3.1 Rate doubly robust

Let pp, and pmd,t be generic estimators of p, and md,t, for pd, tq P S´. Given these first-step
estimators, our proposed two-step estimator for the ATT based on (2.6) is given by

pτdr “ En

»

–

pw1,1pD,T qpτpY,Xq `
ÿ

pd,tqPS´

p´1qpd`tq pwd,tpD,T,XqpY ´ pmd,tpXqq

fi

fl , (3.1)

where pτpY,Xq “ Y ´ ppm1,0pXq ` ppm0,1pXq ´ pm0,0pXqqq, and, for pd, tq P S´,

pw1,1pD,T q “
DT

EnrDT s
, (3.2)

pwd,tpD,T,Xq “
Id,t ¨ ppp1, 1, Xq

pppd, t,Xq

N

En
„

Id,t ¨ ppp1, 1, Xq

pppd, t,Xq



. (3.3)

We impose the following assumptions on the quality of nuisance function estimators. We
let ‖f‖L2

”
`ş

f 2dµ
˘1{2 and ‖f‖

8
” supxPX |fpxq| denote the L2- and sup-norm of a function

f , respectively, and let Gnp¨q denote the empirical process
?
n pEn ´ Eq p¨q.

Assumption 4 (Estimation of nuisance parameters)

1. The estimators pp and pm are uniformly convergent in the sense that

‖ppp¨, ¨, ¨q ´ pp¨, ¨, ¨q‖
8
“ opp1q, max

pd,tqPS´
‖pmd,tp¨q ´md,tp¨q‖8 “ opp1q.

2. For pd, tq P S´,

piq EnrpY ´md,tpXqq ¨ p pwd,t ´ wd,tq pW qs “ oppn
´1{2

q.

piiq Enrpw1,1 ´ wd,tqpW q ¨ ppmd,t ´md,tq pXqs “ oppn
´1{2

q.

piiiq Gn

"

Id,t ¨

ˆ

ppp1, 1, Xq

pppd, t,Xq
´
pp1, 1, Xq

ppd, t,Xq

˙

¨ ppmd,t ´md,tq pXq

*

“ opp1q.

pivq Gn rwd,tpW q ¨ ppmd,t ´md,tq pXqs “ opp1q.

pvq Gn

„

Id,t ¨

ˆ

ppp1, 1, Xq

pppd, t,Xq
´
pp1, 1, Xq

ppd, t,Xq

˙

“ opp1q.

One can verify these high-level conditions using empirical process arguments. These typi-
cally involve ensuring that the functional space in which the first-stage estimation error resides
is not overly complex; see, e.g., Kennedy, Ma, McHugh and Small (2017).

Let prnqně1 and psnqně1 be positive sequences converging to zero such that

max
pd,tqPS´

‖pppd, t, ¨q ´ ppd, t, ¨q‖e “ Opprnq,

max
pd,tqPS´

‖pmd,tp¨q ´md,tp¨q‖e “ Oppsnq,

where e “ L2 or 8.
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Lemma 3.1 (Doubly-Robust error rate with generic first step estimators) Suppose
that e “ 8, and that Assumptions 1, 2, 4.1 and 2(i, ii) are satisfied. Then,

pτdr ´ τ “
1

n

n
ÿ

i“1

ηeffpWiq `Op prnsnq ` op
`

n´1{2
˘

. (3.4)

Furthermore, if Assumptions 4.2(iii)-(v) are also fulfilled, the equation (3.4) remains valid when
e “ L2.

The lemma demonstrates that our estimator is doubly robust in terms of its convergence
rate. The remaining term is the product of the error rates of the first-stage estimators. Due
to the product structure, each estimator typically needs only to converge to its true value at a
rate of opn´1{4q for the ATT estimator to converge at the parametric rate. This property also
allows for a trade-off between precision in the two nuisance estimators.

In the following subsection, we present lower-level conditions for cases in which the nuisance
functions are estimated nonparametrically using “leave-one-out” local polynomial estimators.
The ‘leave-one-out’ technique enables us to directly establish the conditions in Assumption 2
without relying on empirical process theory. This is desirable, as verifying the complexity of
the space where local polynomial (logistic) estimators reside is not a trivial task.

3.2 Local polynomial estimation of nuisance functions

We first introduce the estimator for the PS functions. Conditional probability functions are
naturally bounded within the unit interval. However, these bounds may not be respected when
using linear probability models. As a nonparametric generalization of parametric multinomial
logit regression, local multinomial logit regression enforces such bounds by design. Through
extensive Monte Carlo simulations, Frölich (2006) demonstrates that the local multinomial logit
estimator consistently outperforms local least squares, Klein–Spady, and Nadaraya–Watson
estimators. Hence, we prefer this estimator over other nonparametric methods.

Let us assume that there are functions tgd,tp¨qupd,tqPS´ , such that

ppd, t, xq “
exppgd,tpxqq

1`
ř

pd1,t1qPS´ exppgd1,t1pxqq
,

for pd, tq P S´, and pp1, 1, xq “
´

1`
ř

pd1,t1qPS´ exppgd1,t1pxqq
¯´1

. That is, we suppose that the
generalized PS can be represented by a multinomial logistic transformation of unknown func-
tions tgd,tp¨qupd,tqPS . Instead of imposing specific functional forms on tgd,tp¨qupd,tqPS´ , the local
multinomial logit estimator approximates these unknown functions locally using polynomials,
which we will describe in detail below.

In line with the conventions of local polynomial estimation, we employ the following nota-
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tions as shorthand for common operators on vectors,

k “ pk1, ..., kvq, |k| “
v
ÿ

`“1

k`, k! “
v
ź

`“1

k`!, xk “
v
ź

`“1

xk`` ,

f pkqpxq “
Bkfpxq

Bxk11 ¨ Bx
k2
2 ¨ ¨ ¨ Bx

kv
v

,
ÿ

0ď|k|ďp

fpkq “
p
ÿ

`“0

ÿ̀

k1“0

...
ÿ̀

kv“0
k1`...`kv“`

fpk1, ..., kvq.

Furthermore, we define nk “
`

k``´1
`´1

˘

as the number of distinct `-tuples k with |k| “ k. We
arrange these nk `-tuples in a lexicographically-ordered sequence, prioritizing the last position,
and denote the mapping from the rank in the ordered sequence to the corresponding `-tuple as
πkp¨q.

Our method accommodates discrete and continuous covariates, so we must differentiate
between these variables. We assume that x “ pxc, xdq, where xc is a υc-vector of continuous
covariates, and xd is the subvector of discrete variables. We also distinguish between ordered
and unordered discrete variables. That is, xd “ pxu, xoq, where xu is a υu-vector of unordered
covariates and xo is a υo-vector of ordered covariates.

Now, for a generic function, g : X Ñ R, and a point, x˚ P X , gp¨q can be approximated in
a neighborhood of x˚ by a p-th order Taylor series with respect to the continuous variables, as

gpxq «
ÿ

0ď|k|ďp

1

k!
gpkqpx˚qpxc ´ x

˚
c q

k
“ Xpx˚c q

1γgpx
˚
q,

where Xppxcq “ pX
p0q1
pxcq, ...,X

ppq1
pxcqq

1 is a Npˆ 1 vector that contains the sorted pXc´ xcq
k,

with Np ”
řp
k“0 nk. The l-th entry of Xpkq

pxcq, denoted as Xpk,lq
pxcq, is equal to pXc ´ xcq

πkplq.
The vector γgpxq “ pγ

p0q1

g pxq, . . . , γ
ppq1

g pxqq1 is defined as the vector of lexicographically-ordered
gpkqpxq{k!.

The local approximation is achieved through kernel smoothing. For continuous variables, we
let the kernel function be denoted by Kjpuq, j “ ps, or. It is a nonnegative function supported
on r´1, 1sυc . Suppose h ą 0 is a generic bandwidth parameter. We denote the scaled kernel
function by Khpuq “ K pu{hq {hυc . We use the kernel function proposed by Li and Racine
(2007) for discrete variables. This kernel function is defined as

Lλpxd, zdq “
υu
ź

s“1

λ1txu,s´zu,suu

υo
ź

s“1

λ|xo,s´zo,s|o , (3.5)

where λ “ pλu, λoq P r0, 1s
2 is a generic smoothing parameter. When λ “ 0, the estimator

reduces to the frequency estimator.
For the j-th observation of covariates, Xj, our local polynomial (multinomial) logit estimator

of γ, denoted by pγ, satisfies

pγpXjq ” ppγ
1
1,0pXjq, pγ

1
0,1pXjq, pγ

1
0,0pXjqq

1
“ arg max

γPR3Np

1

n´ 1

n
ÿ

i‰j

`pWi, Xj; γq rKpspXi;Xj, h, λq, (3.6)
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where rKpspXi;Xj, h, λq “ Kps
h pXc,i ´Xc,jqLλpXd, Xd,jq and the local likelihood function

`pw, x; γq is defined as

`pw, x; γq “
ÿ

pd1,t1qPS´

Id,tXppxcq
1γd,t ´ log

¨

˝1`
ÿ

pd1,t1qPS´

exp
`

Xppxcq
1γd1,t1

˘

˛

‚.

Note that we have used a “leave-one-out” version of the local regression estimator for the
construction of pγ, i.e., γpXjq are estimated using every observation except the j-th. This
technique, standard in the literature (Powell and Stoker, 1996; Powell, Stock and Stoker, 1989;
Rothe and Firpo, 2019), serves to avoid a “leave-in” bias that is of first-order importance when
estimating the ATT.

Let e`,k denote an `-dimensional vector in which the k-th element is set to one, while all
remaining elements are zero. Then, for a given pγ, the generalized PS can be approximated by5

pppd, t, xq “
exppe1Np,1

pγd,tpxqq

1`
ř

pd1,t1qPS´ exppe1Np,1
pγd1,t1pxqq

, (3.7)

for pd, tq P S´, and ppp1, 1, xq “ 1´
ř

pd,tqPS´ pppd, t, xq.
For OR models, we employ leave-one-out q-th order local polynomial least squares estima-

tors. First, the local polynomial regression coefficients are estimated by solving the following
equation:

pβd,tpXjq “ arg min
βPRNp

1

n´ 1

n
ÿ

i‰j

`

Yi ´Xq,ipXc,jq
1β
˘2
Id,t,i rKorpXi;Xj, bd,t, ϑd,tq, (3.8)

where rKorpXi;Xj, bd,t, ϑd,tq “ Kor
bd,t
pXc,i ´Xc,jqLϑd,tpXd, Xd,jq, and Id,t,i “ 1tDi “ d, Ti “ tu.

Then, we estimate the OR functions by

pmd,tpXjq “ e1Nq ,1
pβd,tpXjq, (3.9)

for pd, tq P S´.
We analyze the asymptotic behaviors of these local polynomial estimators in Appendix B.

We provide results on the uniform convergence rate for the approximation error. In particular,
we establish a uniform stochastic expansion for the local multinomial logit regression that is of
independent interest.

Remark 1 The choice of polynomial order depends on considerations such as computational
tractability and the trade-off between bias and variance properties. We adhere to the recom-
mendation made by Fan et al. (1995) to employ odd-degree polynomial fits, as they simplify
the analysis for the boundary bias when using symmetric kernel functions. We allow varying
local polynomial orders for the PS and OR estimators and, in the case of the latter, for distinct

5 We abuse notation and denote the local polynomial estimators for the generalized propensity score as pp and
for the outcome regression as pm, which are the same as the generic estimators introduced in Section 3.1.
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treatment groups. This flexibility is desirable as the propensity score and conditional mean
functions might display varying degrees of smoothness.

3.3 Asymptotic normality

With tpmd,tupd,tqPS´ given in (3.9), and pp defined in (3.7), we can construct an estimator for
τdr as shown in (3.1). In the following, we derive the large sample properties of the estimator pτdr
by applying Lemma 3.1. To achieve this objective, we begin by presenting a set of regularity
assumptions. Henceforth, we use B px, δq to denote a ball centered at x with radius δ, and
λminpAq to represent the smallest eigenvalue of a square matrix A.

Assumption 5 (Support, smoothness, integrability, kernel, and bandwidth conditions)

1. (i) X “ Xc b Xd, where Xc is a compact subset of Rυc and Xd is finite; (ii) For all
xd P Xd, P pXd “ xdq ą 0, and the conditional probability density of Xc, fXc|Xd

p¨|xdq, is
continuously differentiable and bounded away from zero on Xc; (iii) There are positive
constants κ0 and κ1 in p0, 1s such that for any x P X and all ε P p0, κ0s, there exists a
x1 P X satisfying, x1d “ xd, and

B px1, κ1εq Ă B px, εq X X .

2. For all x P X , (i) ppd, t, xq is pp`1q-times continuously differentiable in xc, with uniformly
bounded derivatives, for pd, tq P S; (ii) md,tpxq is pq` 1q-times continuously differentiable
in xc, with uniformly bounded derivatives, for pd, tq P S´.

3. Er|Y |ζ |X,D, T s ă 8 a.s. for some constant ζ ą 2.

4. For j “ ps, or, (i) Kj : r´1, 1sυc Ñ R`; (ii) Kjp¨q satisfies the Lipschitz condition, i.e.
|Kjpuq ´Kjpu1q| ď L ‖u´ u1‖ for some L ą 0 and any u,u1 P Rd.

5. (i) h “ op1q; (ii) log n{ pnhvc`2pq “ op1q and λ{hp “ op1q; (iii) hp`1 “ o
`

n´1{4
˘

and
log n{ pnhυcq “ o

`

n´1{2
˘

. For pd, tq P S´, (iv) bd,t “ op1q; (v) log n{
`

n1´2{ζbυcd,t
˘

“ op1q;
(vi) bq`1d,t “ o

`

n´1{4
˘

and log n{
`

nbυcd,t
˘

“ o
`

n´1{2
˘

; (vii) λ, ϑd,t “ opn´1{4q.

6. With Qjpxcq defined in (B.6), infxcPXc λmin pQjpxcqq ą 0, for j “ p, q.

A few remarks on the assumptions are in order. Assumption 5.1 indicates that our local
polynomial estimator can handle discrete, categorical data. The final part of the condition,
proposed by Fan and Guerre (2016), requires that the boundary of X is sufficiently dense
for the first-stage estimators to exhibit good bias and variance properties near the boundary.
Assumption 5.2 describes the standard smoothness condition for the nuisance functions. As-
sumption 5.3 is a regularity condition that controls the conditional moments of Y . Assumption
5.4 collects the regularity conditions on the kernel functions. We note that different kernels
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can be used for the propensity score and conditional mean models. In practice, the kernel
Kp¨q usually takes a product form, i.e., Kpuq “

śυc
i“1Kpuiq, where Kp¨q can be selected from

several options, such as triangular, biweight, triweight, or Epanechnikov kernels. However, the
Gaussian kernel is ruled out due to the restriction on compact support. Assumption 5 compiles
the rate condition on the bandwidths. Assumptions 5.5 (ii) and (v) are imposed to ensure
linear expansions of the local polynomial estimators hold uniformly over X . When Y has finite
moments of any order, such as when it has bounded support, Assumption 5.5(v) is implied by
Assumption 5.5 (vi). Assumptions 5.5 (iii), (vi), and (vii) specify rate conditions on the bias
and stochastic part of the first step estimation error. The usual oppn´1{4q rate of convergence
for the error applies here.

It is important to note that our estimator builds on the efficient influence function and
therefore inherits a doubly robust (DR) property. Without such a DR property, it would typi-
cally require more stringent rate conditions on the bias part, which can only be satisfied with
higher-order kernel functions. See, for example, Newey (1994) and Lee (2018) for detailed dis-
cussion. However, this usually results in estimators being more sensitive to tuning parameters,
such as bandwidths.

Remark 2 Rothe and Firpo (2019) provides a result that can be applied to weaken the rate
conditions on the nuisance functions. They present higher-order expansions of semiparametric
two-step DR estimators, demonstrating that if the first-step error’s bias and the stochastic
components are of order oppn´1{6q, and their product is of order oppn´1{2q, the resulting DR
estimator achieves root-n consistency. We will not delve into an in-depth discussion on this
topic to maintain focus.

Theorem 2 (Asymptotic Normality Doubly Robust Estimator) Under Assumptions 1, 2, and
5, we have

?
nppτdr ´ τq “

1
?
n

n
ÿ

i“1

ηeffpWiq ` opp1q
d
Ñ N p0, Ωdrq , (3.10)

where Ωdr “ ErηeffpW q2s.

Theorem 2 states that pτdr is root-n consistent, and asymptotically normal. It also shows
that the estimation error of the nuisance functions does not affect the asymptotic distribution
of pτdr. Furthermore, the asymptotic variance of pτdr is equal to the semiparametric efficiency
bound.

The theorem can be applied to calculate confidence intervals for the ATT. To achieve this,
we need an estimator of the asymptotic variance, Ωdr. One approach to constructing such
an estimator is by using empirical analogs of the influence function or through bootstrapping.
Here, we focus on the first method, while a weighted bootstrap procedure that accommodates
clustered inference is provided in Appendix C.4. Let

pηeffpW q “
ÿ

pd,tqPS´

p´1qd`t pwd,tpD,T,XqpY ´ pmd,tpXqq ` pw1,1pD,T,XqppτpY,Xq ´ pτdrq, (3.11)
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and pΩdr “ EnrpηeffpW q2s. Under mild regularity conditions, the consistency of pΩdr can be
established, with its proof included in that of Theorem 3 presented in the following section.

3.4 Bandwidth selection

This subsection addresses the practical selection of bandwidth for the first-step local poly-
nomial estimators. It is well-documented that smoothing parameters have a significant impact
on balancing the trade-off between bias and variance. Although robustness checks employing
multiple bandwidths can be useful, a reliable data-driven selection rule is often preferred. In
the following, we outline two cross-validation procedures for choosing these tuning parameters.

Define the following two criterion functions

C ls
n ph, λ, tbd,t,ϑd,tupd,tqPS´q

“
1

n

n
ÿ

i“1

$

&

%

ÿ

pd,tqPS

pId,t,i ´ pppd, t,Xiqq
2
`

ÿ

pd,tqPS´

Id,t,ipYi ´ pmd,tpXiqq
2

,

.

-

, (3.12)

Cml
n ph, λ, tbd,t,ϑd,tupd,tqPS´q

“
1

n

n
ÿ

i“1

$

&

%

´
ÿ

pd,tqPS

Id,t,i logppppd, t,Xiqq `
ÿ

pd,tqPS´

Id,t,ipYi ´ pmd,tpXiqq
2

,

.

-

. (3.13)

The least-squares criterion, C ls
n , is a standard choice in the kernel estimation literature. It

is based on the sum of the least squares distance between the observed and leave-one-out fitted
values for both PS and OR estimators, The second criterion, Cml

n , replaces the PS estimator’s
least squares sum with that of observed likelihood. This idea of using a likelihood-based criterion
in local logistic estimation can be traced back to Staniswalis (1989).

The cross-validated bandwidths, pphj, pλj, tpbjd,t, pϑ
j
d,tupd,tqPSq, minimizes Cj

n for j “ ls,ml. In
Appendix C.2, we investigate the mean integrated squared error (MISE) properties of the
first-step estimators and derive the convergence rates of the optimal bandwidths. For local
linear estimation (i.e. p “ q “ 1), optimal bandwidths guarantee that the rate conditions in
Assumption 5.5 are fulfilled if υc ă 4. However, this result does not impose any restrictions on
the number of discrete variables.

Remark 3 When combined with local multinomial logit estimation, cross-validation can be
computationally demanding. This is partly due to the absence of a closed-form solution for local
multinomial logit regression, unlike the local least squares regression. Evaluating the criterion
function requires solving n minimization problems, which can be time-consuming, particularly
for large datasets. To address this issue, we propose a plug-in method for frequency-based local
polynomial estimators, detailed in Algorithm C.1 in Appendix C.3. This algorithm leverages
analytical expressions for the MISE, circumventing the computational burden of the cross-
validation method. We recommend using this procedure when υd is small, and the size of the
dataset is substantial.
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4 Testing for compositional changes

Propositions 1 and 2 reveal that our proposed estimator for the ATT is robust against
compositional changes; however, it is less efficient than the DR DiD estimator proposed by
Sant’Anna and Zhao (2020) when the covariate-stationarity assumption is correctly imposed.
This trade-off suggests a nonparametric Hausman (1978)-type test for the absence of composi-
tional changes can be constructed by comparing our proposed estimator with that of Sant’Anna
and Zhao (2020). Although Sant’Anna and Zhao (2020) focus on parametric first-step estima-
tors for the nuisance parameters, we modestly extend their analysis by considering nonpara-
metric first-step estimators in this section.

Before detailing the test construction, we define the null and alternative hypotheses, H0

and H1, respectively. Let τdr and τsz be as defined in (2.6) and (2.9), respectively. Here, we
aim to test

H0 : τsz “ τdr against H1 : τsz ‰ τdr.

Under the null, Sant’Anna and Zhao (2020)’s DR DiD estimand is equal to our proposed
estimand, while the alternative is the negation of the null hypothesis. Note that we are not
interested in directly testing the stationarity assumption, pD,Xq KK T , per se, but rather testing
how this assumption affects the construction of our target parameter of interest, the ATT in
period t “ 1. This allows our test procedure to concentrate power in directions that are
arguably more relevant to our context.

To operationalize this testing procedure without invoking additional parametric assump-
tions, we need a nonparametric estimator for τsz, which in turn requires nonparametric estima-
tors for the PS p̃p¨q and the OR functions md,tp¨q, pd, tq P S. For the PS, we can use the local
polynomial estimators from Section 3.2 to construct an estimator for p̃p¨q as

pp̃pXq “ ppp1, 1, Xq ` ppp1, 0, Xq,

where ppp1, t, Xq is given by (3.7). We can estimate the OR md,tp¨q as in (3.9), though here we
note that now we need to estimate all four conditional mean functions and not just three as in
Section 3. Based on these, we can then nonparametrically estimate τsz by

pτsz ” En

»

–

D

EnrDs
pτpXq `

ÿ

pd,tqPS

p´1qpd`tq pwszd,tpD,T,XqpY ´ pmd,tpXqq

fi

fl . (4.1)

where pτpxq “ ppm1,1pxq ´ pm1,0pxqq ´ ppm0,1pxq ´ pm0,0pxqq, and, for t “ 0, 1,

pwsz1,t pD,T,Xq “
D ¨ 1tT “ tu

En rD ¨ 1tT “ tus
,

pwsz0,t pD,T,Xq “
pp̃pXq p1´Dq ¨ 1tT “ tu

1´ pp̃pXq

O

En

«

pp̃pXq p1´Dq ¨ 1tT “ tu

1´ pp̃pXq

ff

.
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Given this nonparametric estimator for τsz and our nonparametric estimator for τdr in (3.1),
our test statistic is defined as

Tn “ npV ´1n ppτdr ´ pτszq
2 , (4.2)

where
pVn ” En

“

ppηeffpW q ´ pηszpW qq
2
‰

,

with pηeffpW q defined in (3.11) and

pηszpW q ”
D

EnrDs
ppτpXq ´ pτszq `

ÿ

pd,tqPS

p´1qpd`tq pwszd,tpD,T,XqpY ´ pmd,tpXqq. (4.3)

pVn is an estimator for the variance of the difference between the two DiD estimators for the ATT.
We note that an alternative estimator for this difference under the null could be constructed
based solely on the variances of each DiD estimator, i.e., Ṽn “ pΩdr´pΩsz, with pΩdr “ EnrpηeffpW q2s
and pΩsz “ EnrpηszpW q2s. However, such as estimator may lead to a negative variance estimate
in finite samples, which is obviously not plausible. Using pVn bypasses this drawback.

In the following theorem, we characterize the asymptotic behavior of this statistic. Let c˚1´α
denote the p1 ´ αq-th quantile of the chi-squared distribution with one degree of freedom (i.e.
χ2
1).

Theorem 3 Suppose Assumptions 1, 2, and 5 hold. The following additional condi-
tions are satisfied: (i) Assumptions 5.2(ii) and 5.5(iv)-(vii) are fulfilled for pd, tq “ p1, 1q;
(ii)Var rτpXq|D “ 1s ą 0. Then,
(a) under the null space H0, pVn

p
Ñ ρsz ą 0, and

lim
nÑ8

P
`

Tn ě c˚1´α
˘

“ α; (4.4)

(b) under the alternative space H1,

lim
nÑ8

P
`

Tn ě c˚1´α
˘

“ 1. (4.5)

The theorem states that the test controls size and is consistent. Although not discussed in
detail here, it is easy to show that our test also has power against sequences of Pitman-type
local alternatives that converge to the null at the parametric rate.

Remark 4 It is crucial to recognize that our test should be viewed as a “model validation”
instead of a “model selection” procedure. For researchers concerned about the validity of As-
sumption 3, it may be tempting to perform a two-stage test. In the first stage, a Hausman
specification test is used to “pretest” for the presence of compositional changes, and then, in
the second stage, the usual t-test is conducted based on either pτdr or pτsz, depending on the
outcome of the Hausman-test. However, as demonstrated by Guggenberger (2010a), Guggen-
berger (2010b) and Roth (2022), such a model-selection procedure can lead to substantial size
distortions when using standard inference methods.
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5 Monte Carlo simulation study

In this section, we examine the finite sample properties of our proposed estimators and
testing procedure. We conduct two Monte Carlo experiments in this section. In the first ex-
periment, there are compositional changes over time, so Assumption 3 is violated. In contrast,
the second experiment adheres to this assumption as the joint distribution of covariates and
treatment is independent of treatment timing. For each design, we compare our nonparamet-
ric DR DiD estimator pτdr defined in (3.1), which is robust against compositional changes and
semiparametrically efficient, with the nonparametric extension of Sant’Anna and Zhao (2020)’s
estimator pτsz defined in (4.1), which assumes no compositional change, and with the estimates
of the regression coefficients, τfe, associated with two-way fixed effect (TWFE) regression spec-
ifications of the type

Y “ α1 ` α2T ` α3D ` τfepT ¨Dq ` θ
1X ` ε.

We consider two TWFE specifications: 1) a linear specification, where all the covariates X enter
linearly, and 2) a saturated specification, where, in addition to the linear terms, quadratic terms
of the continuous covariates and all the interactive terms of the covariates are also included.
We include the TWFE specifications in our comparison set as they are prominent in empirical
work.

We employ local linear (p, q “ 1) kernel estimators for both the PS and OR functions.
As described in Section 3.2, the PS is estimated using the local likelihood method with the
(multinomial) logistic link function, whereas the OR is estimated using the local least squares
estimator. We use the second-order Epanechnikov kernel for the continuous covariates, and for
the discrete variables, we use the kernel given in (3.5). Bandwidth selections are based on the
log-likelihood and least squares distance criteria discussed in Section 3.4.

Our experiments involve a sample size of n “ 1000, with each design undergoing 5, 000

Monte Carlo replications. We evaluate the DiD estimators for the ATT using various metrics:
average bias, median bias, root mean square error (RMSE), empirical 95% coverage probability,
the average length of a 95% confidence interval, and the average of the plug-in estimator for the
asymptotic variance. Confidence intervals are calculated using a normal approximation, with
asymptotic variances estimated by their sample analogues. We also compute the semiparametric
efficiency bound for each design to gauge the potential loss of efficiency/accuracy associated
with using inefficient DiD estimators for the ATT. Lastly, we perform a Hausman-type test as
described in Section 4 under each design and report the empirical rejection rates.

5.1 Simulation 1: non-stationary covariate distribution

We first consider a scenario in which the stationarity condition is not satisfied. Let X “

pX1, X2, ..., X6q, where X1 and X2 are drawn from Uniform r´1, 1s, X3 and X4 are binary
variables, following Bernoulli p0.5q, and the remaining two, X5 and X6, are distributed as
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Binomial p3, 0.5q. The six variables are mutually independent.
Define

fps1,0pXq “0.4
2
ÿ

s“1

pXs ´X
2
s q ` 0.2

6
ÿ

k“3

Xk ` 0.1

¨

˝

ÿ

jPt3,5u

p´1qj`1XjXj`1

`

2
ÿ

l“1

6
ÿ

l1“3

p´1ql`1XlXl1 `

4
ÿ

`“3

6
ÿ

`1“5

p´1q```
1

X`X`1

¸

,

fps0,1pXq “0.4p2X1 `X2 `X
2
1 ´X

2
2 `X1X2q

` 0.2
6
ÿ

k“3

p´1qk`1Xk ` 0.1

˜

6
ÿ

l“3

X2Xl `

4
ÿ

`“3

X`X6

¸

,

fps0,0pXq “0.4pX1 ` 2X2 ´X
2
1 `X

2
2 ´X1X2q

` 0.2
6
ÿ

k“3

p´1qkXk ` 0.1

˜

6
ÿ

l“3

X1Xl `

4
ÿ

`“3

X`X5

¸

,

and for the OR models,

f orbasepXq “ f orhetpXq “ 27.4X1 ` 27.4X2 ` 13.7X2
1 ` 13.7X2

2 ` 13.7X1X2,

f orattpXq “ 27.4X1 ` 13.7X2 ` 6.85
6
ÿ

k“3

Xk ´ 15.

We consider the following data generating process

ps1pd, t,Xq “

$

’

’

&

’

’

%

exppfpsd,tpXqq

1`
ř

pd,tqPS´ exppfpsd,tpXqq
, if pd, tq P S´

1

1`
ř

pd,tqPS´ exppfpsd,tpXqq
, if pd, tq “ p1, 1q.

Let U „ Uniform r0, 1s. The treatment groups are assigned as follows

pD,T q “

$

’

’

’

’

’

&

’

’

’

’

’

%

p1, 0q, if U ď ps1p1, 0, Xq,

p0, 1q, if ps1p1, 0, Xq ă U ď ps1p1, 0, Xq ` ps1p0, 1, Xq,

p0, 0q, if ps1p1, 0, Xq ` ps1p0, 1, Xq ă U ď 1´ ps1p1, 1, Xq,

p1, 1q, if 1´ ps1p1, 1, Xq ă U.

Next, building on Kang and Schafer (2007), we consider the following potential outcomes

Y0pjq “ 210` f orbasepXq ` εhet ` εj,0, for j “ 0, 1, (5.1)

Y1p0q “ 210` 2f orbasepXq ` εhet ` ε0,1, (5.2)

Y1p1q “ 210` 2f orbasepXq ` f
or
attpXq ` εhet ` ε1,1, (5.3)

where εhet „ NpD¨f orhet, 1q and εd,t, pd, tq P S are independent standard normal random variables.
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Under this design, the covariate distribution does not exhibit time variation. However,
the PS function is different in the two cross-sections. The mean absolute difference between
ps1p1, 1, Xq and ps1p1, 0, Xq, as well as between ps1p0, 1, Xq and ps1p0, 0, Xq, are both approxi-
mately 0.125, with the maximum difference reaching up to 0.63. Consequently, we expect all
of the estimators except for pτdr will produce biased results. In addition, the stationarity test is
likely to reject the null hypothesis with high probability. The results in Table 1 support these
claims.

Table 1: Monte Carlo results under compositional changes. Sample size: n “ 1, 000.

True value of ATT: 4.31. Semiparametric Efficiency Bound: 1753.6

Two-way Fixed Effect Estimators

Spec. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

pτfe Linear -10.553 -10.579 10.963 10418.875 0.088 12.629
pτfe Saturated -11.302 -11.247 11.667 8814.447 0.030 11.622

Nonparametric Doubly Robust DiD Estimators for the ATT

CV Crit. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

pτdr ML -0.069 0.028 1.390 1826.180 0.942 5.288
pτdr LS -0.074 0.034 1.395 1835.250 0.942 5.300
pτsz ML 4.380 4.384 4.499 982.252 0.012 3.881
pτsz LS 4.379 4.390 4.498 982.721 0.012 3.882

Hausman-type test

CV Crit. Avg. Test Stats. Emp. Pow. (0.10) Emp. Pow. (0.05) Emp. Pow. (0.01)

ML 21.381 1.000 0.994 0.976
LS 21.297 1.000 0.994 0.970

Note: Simulations based on 5,000 Monte Carlo experiments. pτfe the TWFE regression estimator, pτdr is our proposed nonparametric
DR DiD estimator (3.1), and pτsz is the nonparametric DR DiD estimator (4.1) based on Sant’Anna and Zhao (2020). For TWFE re-
gression, we use a linear specification, “Linear”, and a saturated specification, “Saturated”. For DR DiD estimators, the PS and the OR
models are estimated using a local linear least squares and a local linear logistic regression, respectively. Bandwidth for the PS function
is selected with the log-likelihood criterion, “ML”, and the least squares criterion, “LS”, respectively. Lastly, “Spec.”, “CV Crit.”, “Avg.
Bias”, “Med. Bias”, “RMSE”, “Asy. Var.”, “Cover.”, and “CIL”, stand for the specification, cross-validation criterion, average simulated
bias, median simulated bias, simulated root-mean-squared errors, average of the plug-in estimator for the asymptotic variance, 95%
coverage probability, and 95% confidence interval length, respectively. The Hausman-type test statistic is calculated based on (4.2).
“Avg. Test Stats.”, and “Emp. Pow. pαq” stand for the average test statistic, and empirical power of the test with a nominal size α,
respectively. See the main text for further details.

First, results in Table 1 suggest that both pτfe and pτsz are severely biased under this DGP,
while pτdr exhibits negligible bias on average. Moreover, among the three sets of estimators
considered, only our proposed estimator attains the correct coverage rate. This result is robust
to the bandwidth selection method. Notably, the performance of the TWFE does not improve
with a fully-saturated specification, indicating that incorporating nonlinear terms into a TWFE
regression does not generally help in identifying heterogeneous treatment effects. In terms of
efficiency, it is worth noting that the asymptotic variance of pτdr is close to the semiparametric
efficiency bound, which corroborates the findings of Theorem 2. Regarding the testing perfor-
mance, our Hausman-type test can effectively distinguish between the two nonparametric DiD
estimators with a high degree of certainty, which is in line with our theoretical finding.
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5.2 Simulation 2: stationary covariate distribution

We now slightly adjust the first design by taking the average of propensity scores over time
while keeping all other aspects of the DGP constant. Specifically, we define

ps2pd, t,Xq “ Ps1 pT “ tq pps1pd, 1, Xq ` ps1pd, 0, Xqq,

where Ps1 pT “ tq “ Erps1p1, t, Xq`ps1p0, t, Xqs. The treatment groups are then assigned based
on the realization of a standard uniform random variable on the unit interval partitioned by
tps2pd, t,Xqupd,tqPS . Furthermore, the potential outcomes are determined by (5.1)-(5.3). Unlike
the first DGP, both the covariate distribution and the propensity score function are stationary
in this case. As a result, we anticipate that both pτdr and pτsz will be consistent for the true ATT.
Furthermore, the empirical rejection rate of the Hausman-type test is expected to converge to
the nominal sizes. The Monte Carlo results under this DGP are summarized in Table 2.

Table 2: Monte Carlo results under no compositional changes. Sample size: n “ 1, 000.

True value of ATT: 9.13. Semiparametric Efficiency Bound: 796.8

Two-way Fixed Effect Estimators

Spec. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

pτfe Linear -10.819 -10.620 11.223 9892.820 0.070 12.316
pτfe Saturated -10.763 -10.699 11.083 7927.311 0.036 11.027

Nonparametric Doubly Robust DiD Estimators for the ATT

CV Crit. Avg. Bias Med. Bias RMSE Asy. Var. Cover. CIL

pτdr ML -0.114 -0.119 1.309 1703.910 0.948 5.110
pτdr LS -0.116 -0.117 1.311 1705.382 0.948 5.112
pτsz ML -0.071 -0.054 0.931 921.945 0.962 3.762
pτsz LS -0.072 -0.066 0.931 922.137 0.962 3.762

Hausman-type test

CV Crit. Avg. Test Stats. Emp. Size (0.10) Emp. Size (0.05) Emp. Size (0.01)

ML 1.076 0.110 0.054 0.012
LS 1.077 0.106 0.056 0.010

Note: Simulations based on 5,000 Monte Carlo experiments. pτfe the TWFE regression estimator, pτdr is our proposed nonparametric
DR DiD estimator (3.1), and pτsz is the nonparametric DR DiD estimator (4.1) based on Sant’Anna and Zhao (2020). For TWFE
regression, we use a linear specification, “Linear”, and a saturated specification, “Saturated”. For DR DiD estimators, the PS and
the OR models are estimated using a local linear least squares and a local linear logistic regression, respectively. Bandwidth for the
PS function is selected with the log-likelihood criterion, “ML”, and the least squares criterion, “LS”, respectively. Lastly, “Spec.”,
“CV Crit.”, “Avg. Bias”, “Med. Bias”, “RMSE”, “Asy. Var.”, “Cover.”, and “CIL”, stand for the specification, cross-validation crite-
rion, average simulated bias, median simulated bias, simulated root-mean-squared errors, average of the plug-in estimator for the
asymptotic variance, 95% coverage probability, and 95% confidence interval length, respectively. The Hausman-type test statistic
is calculated based on (4.2). “Avg. Test Stats.”, and “Emp. Size pαq” stand for the average test statistic, and empirical size of the
test with a nominal size α, respectively. See the main text for further details.

In contrast to the results presented in Table 1, both pτdr and pτsz exhibit minimal bias, and
their confidence intervals achieve nominal coverage. Their performance is consistently good
across different bandwidth selection methods. The TWFE estimators, however, continue to
show substantial bias and achieve nearly negligible coverage, despite having much wider confi-
dence intervals compared to the DR DiD estimators. This occurs because the true treatment
effects are heterogeneous, but TWFE specifications do not account for that (i.e., the models are
misspecified). In terms of efficiency, the asymptotic variance of pτsz is reasonably close to the
semiparametric efficiency bound. The asymptotic variance of pτdr is, on average, 2.2 times larger
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than the semiparametric efficiency bound (that imposes no-compositional changes), which is
still significantly lower than that of the TWFE estimators. Given that Assumption 3 holds for
this DGP, the null hypothesis H0 is true. The empirical rejection frequency of our Hausman-
type test is nearly identical to its nominal value, highlighting the desirable properties of this
testing procedure.

6 Empirical illustration: the effect of tariff reduction on

corruption

In this section, we revisit a study from Sequeira (2016) on the effect of import tariff lib-
eralization on corruption patterns. Prior to the phaseout of high tariffs between South Africa
and Mozambique, bribery payment was pervasive, often used to dodge tariff taxes. According
to Sequeira and Djankov (2014), bribery payments can be found in approximately 80% of all
shipment records in a random sample of tracked shipments before a tariff rate reduction in
2008.

This tariff change is the result of a long-standing trade agreement between South Africa and
Mozambique. The agreement, the Southern African Development Community Trade Protocol,
was signed in 1996. The protocol established a timeline for import tariff reductions between
2001 and 2015. The most significant reduction occurred in 2008, with the average nominal rate
decreasing by 5%. The effect of such a tariff liberalization scheme is considerable, as both the
likelihood and the amount of bribe payments experienced a significant decline following the
phaseout.

To investigate the causal relationship between tariff rate reduction and changes in bribery
patterns, Sequeira (2016) leverages a quasi-experimental variation induced by trade protocol:
Not all products were subject to the change in tariff rate during the analysis period, enabling
products unaffected by the tariff changes to serve as a control group. It is thus possible to utilize
the DiD design to analyze how tariff rate changes affect bribe patterns along trade routes.

Sequeira (2016) collects data on the bribe payment along the trade routes between the two
countries from 2007 to 2013. This data set has a repeated cross-section structure. Sequeira
(2016) mainly considers the following two TWFE regressions:

(Linear) yit “ γ1TCCiˆ Post` µPost` γ2TCCi` β2BTi ` Γi ` pi ` wt ` δi ` εit,

(Interactive) yit “ γ1TCCiˆ Post` µPost` γ2TCCi` β2BTi ` Γi ` Γi ˆ Post

` pi ` wt ` δi ` εit,

where TCCi and BTi denote Tariff Change Category and Baseline Tariff, respectively, and yit is
one of the measurements of bribery payments for shipment i in period t. TCC is the treatment
indicator, which takes value one if the product shipped experienced a tariff reduction in 2008,
and zero otherwise. The post-treatment period indicator, Post, is equal to one for the years
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following 2008. BT refers to the tariff rates before 2008. A vector of covariates, Γ, industry,
year, and clearing agent fixed effects, p, ω, δ, are also included in the regressions. The interactive
specification differs from the linear one by an interaction of Post and the covariates, Γ.

Sequeira (2016) focuses on interpreting γ1 in both specifications as an estimate of the
ATT. However, this interpretation might not be valid when treatment effects are heteroge-
neous (Meyer, 1995; Abadie, 2005). Our proposed DR DiD estimator, τdr, and the one based
on Sant’Anna and Zhao (2020), pτsz, could be better suited for the task of identifying and con-
sistently estimating the ATT in the present context. In what follows, we estimate the ATT
using our proposed DR DiD estimator and compare the results to those obtained by Sequeira
(2016).

To achieve this, we first estimate the PS and OR functions based on local linear logistic
regression and local linear OLS, respectively. Following Sequeira (2016), we consider four
different outcome measures: a binary variable denoting if a bribe is paid, the logarithmic
form, logpx ` 1q, of the amount of bribe payment, the logarithmic form of the amount of
bribe paid as a share of the value of the shipment, and as a share of the weight of the shipment,
respectively. Across all four specifications, we include the following common covariates: baseline
tariff rate, dummy variables for whether the shipper is a large firm, whether the product is
perishable, differentiated, an agricultural good, whether the shipments are pre-inspected at
origin, monitored, and originates from South Africa. Additionally, we include the day of arrival
during the week and the terminal where the cargo was cleared. Our procedures allow for these
covariate-specific trends, so the CPT Assumption 2(i) holds only after accounting for these
observed characteristics. To avoid weak-overlap problems, we truncate PS estimates below
0.01.

Table 3 summarizes our results. For each estimator, we report both the unclustered standard
errors based on asymptotic approximation (in parentheses) and the cluster-robust standard
errors based on the bootstrap procedure in Algorithm C.2 (in brackets), where we cluster at
the four-digit HS code level as in Sequeira (2016). Likewise, we conduct two sets of Hausman-
type tests – one using unclustered influence functions based on (4.2) and the other that accounts
for clustering using a bootstrap procedure given in Algorithm C.3.

We first observe that the point estimates are negative for all measures of bribery payment,
consistent with the findings of Sequeira (2016). The results based on the two DR DiD methods
are generally close to the TWFE estimates with the interactive specification. For instance, we
find that a tariff reduction reduces the probability of paying a bribe by 28 to 43 percentage
points, depending on the specific estimator used. The result is statistically and economically
significant at the usual levels. Tariff reduction also seems to lead to a decrease in bribery.6

The magnitude of the causal effects based on the weighted results, on the other hand, is more

6 Some of local linear OR estimates were a bit sensitive to bandwidth choice. This is arguably due to the
limited number of observations within certain strata. To improve the stability of cross-validation, we impose
a common bandwidth across all four treatment groups for each type of covariates.
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Table 3: Difference-in-differences estimation results for Sequeira (2016)

Estimator/Outcome Prob(bribe) Log(1 + bribe) Log(1 + bribe/shpt.val.) Log(1 + bribe/shpt.tonn.)

TWFE - Linear Spec. -0.429 -3.748 -0.011 -1.914
(0.083) (0.724) (0.003) (0.341)
[0.131] [1.064] [0.003] [0.496]

TWFE - Interactive Spec. -0.296 -2.928 -0.010 -1.597
(0.082) (0.746) (0.004) (0.402)
[0.124] [0.917] [0.004] [0.457]

DR DiD pτsz -0.275 -2.542 -0.014 -0.918
(no-compositional changes) (0.067) (0.636) (0.005) (0.451)

[0.096] [0.773] [0.006] [0.492]

DR DiD pτdr -0.307 -2.888 -0.027 -1.131
(robust to compositional changes) (0.084) (0.798) (0.010) (0.602)

[0.109] [0.915] [0.014] [0.635]

Hausman-tests for no-compositional changes

Unclustered p-value 0.270 0.199 0.084 0.601

Clustered p-value 0.338 0.238 0.175 0.643

Notes: Same data used by Sequeira (2016). The results represent the estimated ATT of tariff rate reduction on bribery payment behavior. Columns 2
through 5 denote estimates for dependent variables representing whether a bribe is paid, the logarithmic form, logpx`1q, of the amount of bribe paid,
the logarithmic form of the amount of bribe paid as a share of the value of the shipment, and as a share of the weight of the shipment, respectively.
We compare four different DiD estimators for the ATT: 1. the two-way fixed effect estimator based on specifications in Column (1) of Tables 8-11 in
Sequeira (2016); 2. the two-way fixed effect estimator based on Column (2) from Tables 8-11 in Sequeira (2016); 3. DR DiD estimator based on (4.1),
and 4. DR DiD estimator based on (3.1). The same set of covariates is used for the last two estimators. See the main text for further details on the
covariates. Continuous variables are re-scaled between 0 and 1, and then added in with binary variables. For DR DiD estimators, the PS and the OR
models are estimated nonparametrically, using a local linear least squares and a local linear logistic regression, respectively. Bandwidth for the local
linear logistic regression is selected with the log-likelihood criterion. Numbers in the parentheses are unclustered standard errors based on asymptotic
approximation. Numbers in brackets refer to standard errors clustered at the level of four-digit HS code. Cluster-robust standard errors are calculated
following Algorithm C.2 with 9999 bootstrap draws. Hausman-tests are calculated based on (4.2). The clustered p-values are calculated following the
bootstrap procedure in Algorithm C.3 with 9999 bootstrap draws. To avoid weak-overlap problems, we truncate PS estimates below 0.01.

mixed.7 Results based on the TWFE and DR DiD with no-compositional changes estimators
suggest that tariff reduction leads to a statistically significant reduction in the average log
of the ratio between bribery payment and shipment values of similar magnitude, while our
proposed DR DiD estimator that is robust to compositional changes suggests a twice-as-large
effect. When the log of the ratio between bribery payment and tonnage is considered, both
nonparametric DR DiD estimators report large yet insignificant (at 95% level) ATT estimates.
The results of the Hausman-type test displayed at the bottom of Table 3 suggest that we lack
statistical evidence against the assumption of no-compositional changes, especially when one
clusters the standard errors.

In sum, our results support the conclusion of Sequeira (2016) that tariff liberalization de-
creases corruption. Our DR DiD estimates suggest the size of the effects is approximately the
same as that of the original paper, indicating that ruling out treatment effect heterogeneity
and compositional changes are not of primary concern in this particular application.

7 Concluding remarks

In this paper, we developed a doubly robust estimator for the ATT within the difference-
in-differences framework, allowing for time-varying covariates. We established large sample
properties for the proposed estimator when the nuisance functions are estimated nonparamet-

7 We avoid attaching a precise interpretation of these log transformations due to the issues raised by Chen and
Roth (2023).
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rically. In particular, we derived novel results on the uniform linear expansion of the local
multinomial logit estimator with mixed data. We provided extensive discussions comparing
our proposed DR estimator with those developed by Sant’Anna and Zhao (2020). Addition-
ally, we proposed a Hausman-type test for assessing the validity of the ATT estimators under
consideration. We assessed the finite sample performance of our estimation methods and tests
using Monte Carlo simulations. All the finite sample findings are consistent with the asymptotic
results. Furthermore, we demonstrated the practical utility of our approach with an empirical
application concerning the impact of tariff liberalization on corruption.

An intriguing extension of our work is to the case when the number of time periods is
greater than two and when the treatment adoption is staggered, as discussed in Callaway
and Sant’Anna (2021). In such contexts, they demonstrate that a family of group-time average
treatment effects and their aggregates can be identified under a general no-compositional-change
assumption. Allowing for compositional changes in that setup appears promising, particularly
since multiple time periods suggest that a no-compositional change assumption may be even
more restrictive than in the simple two-period case.
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