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Abstract

This paper studies difference-in-differences (DiD) setups with repeated cross-sectional
data and potential compositional changes across time periods. We begin our analysis by
deriving the efficient influence function and the semiparametric efficiency bound for the
average treatment effect on the treated (ATT). We introduce nonparametric estimators
that attain the semiparametric efficiency bound under mild rate conditions on the esti-
mators of the nuisance functions, exhibiting a type of rate doubly robust (DR) property.
Additionally, we document a trade-off related to compositional changes: We derive the
asymptotic bias of DR DiD estimators that erroneously exclude compositional changes
and the efficiency loss when one fails to correctly rule out compositional changes. We
propose a nonparametric Hausman-type test for compositional changes based on these
trade-offs. The finite sample performance of the proposed DiD tools is evaluated through
Monte Carlo experiments and an empirical application. We consider extensions of our
framework that accommodate double machine learning procedures with cross-fitting, and
setups when some units are observed in both pre- and post-treatment periods. As a
by-product of our analysis, we present a new uniform stochastic expansion of the local

polynomial multinomial logit estimator, which may be of independent interest.
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1 Introduction

Difference-in-differences (DiD) designs have been used widely for identifying and estimating
causal effects with observational data. Identification in this research design typically relies on
a conditional parallel trends assumption stipulating that conditional on a set of covariates, the
average untreated outcomes among treated and comparison groups would have evolved “in par-
allel”. When one pairs this assumption with common support and no-anticipation assumptions,
it is easy to establish that the average treatment effect on the treated (ATT) is nonparametri-
cally identified when panel data is available. When one only observes repeated cross-sectional
data, it is common to impose further a no-compositional change assumption, also known as
the stationarity assumption. This is the case in the widely cited DiD procedures of Heckman,
Ichimura and Todd (1997), Abadie (2005), Sant’Anna and Zhao (2020), and Callaway and
Sant’Anna (2021), for example.

Although we have seen a lot of recent developments in DiD methods (see Roth, Sant’Anna,
Bilinski and Poe, 2023 for an overview of recent DiD developments), little attention has been
paid to understanding the importance and limitations of the no-compositional changes assump-
tion. This paper aims to fill this gap by providing researchers with new tools that can be used
when they doubt such an assumption and/or to test its plausibility.

Before discussing the paper’s contributions, it is worth stressing why ruling out composi-
tional changes across periods can be restrictive in real empirical applications. Essentially, the
no-compositional changes assumption requires one to sample observations from the same pop-
ulation across periods, which can be unrealistic in some scenarios. For example, Hong (2013)
studies the effect of Napster on recorded music sales. He uses data from the 1996-2002 Interview
Surveys of the Consumer Expenditure Survey. Over this period, the composition of internet
users has changed substantially. The early adopters tend to be younger, richer, more educated,
and technically savvy, whereas later adopters exhibit a higher diversity level in demographics.
If one ignores such imbalances of group composition across time, the (negative) effect of Nap-
ster on music sales can be overestimated, as the decrease in the average music expenditure may
be attributed to a post-Napster group with more households having low reservation prices for
recorded music. Other applications also share this concern, as discussed below and in more
detail in Section 6. Therefore, having causal inference tools that can assess if the findings are
robust to compositional changes in the sample is of practical interest.

We begin our analysis by showing that one can identify the ATT in DiD setups without
invoking the no-compositional changes assumption. In this scenario, we derive the efficient
influence function (EIF) and the semiparametric efficiency bound for the ATT. We then form
generic nonparametric estimators built on the EIF that can achieve the semiparametric efficient
bound under mild smoothness conditions, a rate doubly robust (DR) property (Smucler, Rot-
nitzky and Robins, 2019). Heuristically, this rate DR property allows for a trade-off between
the rate of convergence of the two nuisance estimators. It implies that nonparametric DiD

estimators for the ATT based on the EIF are y/n-consistent and asymptotically normal even if



one of the outcome regression or generalized propensity score functions is very complex so long
as the other is simple enough; this is weaker then requiring that the estimators for both nuisance
functions converge sufficiently fast. These results are general and do not rely on a specific choice
of estimators for nuisance functions. Nonetheless, they do not help us with practical inference
procedures. For that, we use a local polynomial estimator for the outcome-regressions models
and the local multinomial logit regression to estimate the generalized propensity score, the lat-
ter of which is fairly new in the DiD literature. Importantly, our nonparametric estimators can
accommodate both discrete and continuous covariates,! and all tuning parameters are selected
in a data-driven way via cross-validation.? Finally, we show that the estimtor proposed by
Sant’Anna and Zhao (2020) is no longer DR in this DiD setup with compositional changes. In
fact, we show that even when all nuisance functions are correctly specified, the Sant’Anna and
Zhao (2020)’s DR DiD estimand does not identify the ATT in this general setup. Overall, this
first set of results highlights “the best” one can do in DiD setups with compositional changes.

Next, we tackle the problem of how much efficiency one may lose by not exploring the no-
compositional change assumption when it is valid. To answer this question, we compare our
derived semiparametric efficiency bound that does not impose the no-compositional changes
assumption with the semiparametric efficiency bound derived by Sant’Anna and Zhao (2020)
that fully exploits it. As expected, the extra layer of robustness comes at the cost of loss
of efficiency. Heuristically speaking, the no-compositional change assumption allows one to
pool the covariate data from all time periods, substantially increasing the effective sample
size and the precision of the DiD estimator compared to the one that does not impose the
no-compositional change assumption. Regarding the estimation of nuisance functions, we also
note that, under the no-compositional changes assumption, one can use standard (binary)
propensity score estimators. However, when one allows for compositional changes, one needs to
use generalized propensity score estimators, as there are now four effective groups depending
on the treatment group and the time the unit is observed.

In practice, determining whether compositional changes are a concern for a given em-
pirical application is not always obvious. Specifically, it is unclear whether imposing a no-
compositional change assumption will lead to biased ATT estimates. Using our previous re-
sults, we propose a nonparametric Hausman (1978)-type test for no-compositional changes.
The test compares our nonparametric DiD estimator of the ATT, which is robust to compo-
sitional changes, with the nonparametric extension of Sant’Anna and Zhao (2020)’s DR DiD
estimator, which assumes no compositional changes. We derive the large sample properties of

the proposed test, which shows that it controls size asymptotically and is consistent against a

1 As a side contribution of this paper, we provide a new result on the uniform expansion of the local (multi-
nomial) logit estimators, which accommodates both continuous and discrete variables. This result may be of
independent interest.

2 Bandwidths are selected independently for each set of nuisance functions instead of directly for the ATT
estimator. Nonetheless, the second-step asymptotic results remain unaffected, as the double-robust rate
property of our proposed estimator ensures that using optimal bandwidths for each nuisance function still
enables valid inference on the ATT estimator.



broad set of alternatives.

We demonstrate the practical appeal of our proposed DiD tools through Monte Carlo sim-
ulations and an empirical application that revisits Sequeira (2016). She leverages a quasi-
experimental variation created by a large reduction in the average nominal tariff rate between
South Africa and Mozambique in 2008 to study the causal effect of tariff rate reduction on
trade costs and corruption behavior using a two-way fixed effects specification with covariates
that implicitly imposes a no-compositional changes assumption, among other arguably unnec-
essary homogeneity assumptions. We use our nonparametric tests to assess the plausibility
of the no-compositional changes assumption and fail to reject it at the usual significance lev-
els. Our results support the conclusions by Sequeira (2016) that tariff liberalization decreases
corruption, and our DR DiD estimates are similar to those in the original paper.

Finally, we consider some extensions of our framework. Although our paper primarily fo-
cuses on leave-one-out estimators for the nuisance functions, we also consider cross-fitted esti-
mators, drawing on the modern double machine learning literature; see, e.g., Farrell (2015), Bel-
loni, Chernozhukov, Ferndndez-Val and Hansen (2017), Chernozhukov, Chetverikov, Demirer,
Duflo, Hansen, Newey and Robins (2017), Colangelo and Lee (2023), and Kennedy (2023).
An important difference between cross-fitted and leave-one-out estimators is that the former
requires the number of folds J to be fixed as n — oo, while the latter allows it to grow with
sample size (as J = n). As a result, these estimation procedures rely on different types of
assumptions and require different proof strategies to establish their large-sample properties.

We also extend our analysis to applications where some units are observed in both pre-
and post-treatment periods (a balanced panel data component), while the remaining units are
observed in only one of the two periods (a cross-sectional component). However, our main
results focus on sampling schemes without overlapping units, thus precluding these scenarios.
To cover this practically relevant setup, we derive the EIF and the semiparametric efficiency
bound for the ATT in setups that allow for this type of sampling scheme. Similar to the
pure repeated cross-sectional setup, we discuss how one can build on the derived EIF to form
nonparametric estimators that achieve the semiparametric efficiency bound.

Related literature: This article belongs to the extensive literature on semiparametric
DiD methods. We refer the reader to Roth et al. (2023) for a synthesis of recent advances in
the econometrics of DiD. Within this broad literature, the paper closest to ours is Sant’Anna
and Zhao (2020), which proposes DR DiD estimators for the ATT and derives semiparametric
efficiency bound for such estimators, too. In sharp contrast to us, though, all the results in
Sant’Anna and Zhao (2020) rely on a no-compositional change assumption. Thus, our results
complement theirs. Furthermore, Sant’Anna and Zhao (2020)’s theoretical results rely on
parametric first-step estimators, while we accommodate nonparametric estimators. A perhaps
side and minor contribution of our paper is establishing the statistical properties of Sant’Anna
and Zhao (2020)’s DR DiD estimator with nonparametric estimates of the nuisance functions;
see also Chang (2020).

Our paper also relates to the causal inference literature on compositional changes over



time. Hong (2013) develops a matching-based estimator under a “selection-on-observable’-
type assumption, which is different and arguably stronger than our conditional parallel trends
assumption. Hong (2013) also does not discuss efficiency issues as we do. Stuart, Huskamp,
Duckworth, Simmons, Song, Chernew and Barry (2014) propose inverse probability weighted
estimators for the ATT in DiD setups under compositional changes. In contrast to us, their
estimator does not enjoy any DR property and may not attain the semiparametric efficiency
bound. Nie, Lu and Wager (2019) is also interested in DiD estimators under compositional
changes. Their estimator substantially differs from ours: they use meta-learners and cross-
fitting to estimate nuisance functions, while our estimator is based on the EIF for the ATT.
When treatment effects are heterogeneous, their estimators do not target the ATT but the ATE,
which, in our context, is not identified. They do not consider tests for the no-compositional
changes assumption as we do.

Finally, we contribute to the semiparametric two-stage estimation that depends on non-
parametrically estimated functions. See, e.g., Newey (1994), Chen, Linton and Van Keilegom
(2003), Chen, Hong and Tarozzi (2008), Ackerberg, Chen, Hahn and Liao (2014), Rothe and
Firpo (2019), among many others. Our results on local multinomial logit regression builds on
Fan, Heckman and Wand (1995), Claeskens and Van Keilegom (2003), Li and Ouyang (2005),
and Kong, Linton and Xia (2010). The novel result on the uniform expansion of the local
multinomial logit estimator may be of independent interest. Our cross-fitting double machine
learning results build on, among others, Belloni et al. (2017), Chernozhukov et al. (2017),
Colangelo and Lee (2023), and Kennedy (2023) and extend their cross-sectional results under
unconfoundedness to the DiD context.

Organization of the paper: Section 2 introduces the identification framework of the
DiD parameter under compositional changes, presents the semiparametric efficiency results,
and discusses the bias-variance trade-off of ruling out compositional changes. In Section 3, we
present our nonparametric DR DiD estimators, discuss their large sample properties, and how
to pick tuning parameters. Section 4 discusses a test for no-compositional changes. Monte Carlo
simulations are provided in Section 5, and an empirical illustration is considered in Section 6.
Section 7 discusses extensions. Proofs and additional results are reported in the Supplemental

Appendix available here.

2 Difference-in-Differences

2.1 Framework

This section describes our setup. We focus on the canonical two-period and two-group
setup for conciseness and transparency. We have two time periods, t = 0, where no unit is
exposed to the treatment, and time ¢ = 1, where units in the group with D = 1 are exposed to
treatment; here, D is a binary treatment indicator. We adopt the potential outcome notation

where Yj; (0) and Y}, (1) denote the untreated and treated potential outcome for unit i at time ¢,
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respectively. Observed outcomes are given by Y;; = D;;Y;(1) + (1 — Dy)Y;(0). We also assume
that a k-dimensional vector of pre-treatment characteristics X; € X < R* is available.

This paper considers the case where one has access to repeated cross-sectional data. To
formalize this idea, let T; be a dummy variable that takes value one if the observation 7 is
observed only in the post-treatment period ¢ = 1, and zero if observation i is only observed
in the pre-treatment period ¢t = 0. Define Y; = T;Y;; + (1 — T;) Yio, and let ny; and ng be the

sample sizes of the post-treatment and pre-treatment periods such that n = nq; + ng.

Assumption 1 (Sampling) The pooled data {Y;, D;, X;, T;};_, consists of independent and

identically distributed draws from the mixture distribution P € P:

PY<yD=dX<z,T=t = t-PT=1)PY,<yD=dX<z|T=1)
+(1—-t)-P(T=0)P(Yo<y,D=d, X <z|T=0),

where (y,d,z,t) €Y x {0,1} x X x {0,1}.

Assumption 1 allows for different sampling schemes. For instance, it accommodates the
binomial sampling scheme where an observation ¢ is randomly drawn from either (Y7, D, X) or
(Yo, D, X)) with a fixed probability. It also accommodates the “conditional” sampling scheme
where ny observations are sampled from (Y;, D, X), ng observations are sampled from (Yp, D, X)
and P (T = 1) = ny/n (here, T is treated as fixed). Importantly, Assumption 1 does not impose
that we are sampling from the same underlying distribution across time periods, implying that
it is fully compatible with compositional changes (Hong, 2013). This is in contrast to most of
the DiD literature. For example, Assumption 1(b) in Sant’Anna and Zhao (2020) explicitly
imposes that (D, X) L T see also Heckman et al. (1997), and Abadie (2005) for other DiD
procedures that rely on this stationarity condition.

As is typical in DiD setups, we are interested in the average treatment effect in time period

t = 1 among the treated units,
ATT =7=EYV1(1)|D=1,T=1]-E[Y1(0)|D =1,T =1]. (2.1)

Given that the untreated potential outcome Y;;(0) is never observed for the treated units,
we need to impose assumptions to uncover E[Y; (0)|D = 1,7 = 1] from the data. We make

conditional parallel trends, no-anticipation, and strong overlap assumptions toward this goal.
Let S ={0,1}* and S_ = {(1,0), (0, 1), (0,0)}.

Assumption 2 (Conditional parallel trends, no-anticipation, and overlap)

For some ¢ > 0, (d,t) € S_, and for almost every z € X
() EY(0)D = 1,T = 1,X = 2] — E[y(0)[D = 1,T = 0, X = 1]
=E[Y1(0)|]D=0,T =1,X =z] —E[Y5(0)|D =0,T =0, X = z].
(i)  E[Yp(0)D=1,T=0,X =a] =E[Yp(1)|D =1,T =0, X = ].
(131) P(D=1,T=1)>cand P(D=d,T =t X =2) >¢.
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Assumption 2(i) is the conditional parallel trends assumption (CPT) stating that condi-
tioning on X, the average evolution of the untreated potential outcome is the same among the
treated and untreated groups. This assumption allows for covariate-specific trends and does
not restrict the trends among different covariate strata. Assumption 2(ii) is a no-anticipation
assumption (NAA) stating that, on average, treated units do not act on the future treatment
prior to its implementation (Abbring and van den Berg, 2003; Malani and Reif, 2015). As-
sumption 2(iii) is an overlap condition that guarantees that there are some treated units in the
post-treatment period and that the covariates do not fully determine treatment status. This

condition is crucial for guaranteeing nonparametric regular inference procedures (Khan and
Tamer, 2010).

2.2 Identification and semiparametric efficiency bound

Under Assumptions 1 and 2, it is straightforward to show that the ATT is nonparametrically

identified by the outcome regression estimand?®
T =Tor = E[Y| D = ]_,T = 1] - E[mLo(X) + m071(X) — m()’o(X>| D= 1,T = ]_] s (22)

where mg(xz) = E[Y|D = d,T = t,X = z]. Alternatively, it is also easy to show that one can
identify the ATT using an inverse probability weighted estimand

T = Tipw = E [(le(D,T) - wl,O(D7T7 X) - wO,l(D7T> X) + wO,O(Dv TaX)) Y] ) (23)

where, for (d,t) e S—

DT
w1,1<D>T) = E[DT]’
]dt'p<1a17X) [dt'p(laLX)
DT X)=— E : 2.4
wa(D, T, X) p(d, t, X) p(d,t, X) ’ (24)

I, = I{D = d,T = t}, and p(d,t,x) = P(D =d,T =t|X = z) is a so-called generalized
propensity score. Notice that the weights in (2.4) are of the Hajek (1971)-type. This guarantees
that all the weights sum up to one and typically results in more stable finite sample behavior;
see, e.g., Millimet and Tchernis (2009); Busso, Dinardo and McCrary (2014); Sant’Anna and
Zhao (2020).

From (2.2) and (2.3), it is clear that any linear combination of 7, and 7, also identifies the
ATT under our assumptions. There are also many other potential estimands that make use of
nonlinear combinations of the different terms in 7,, and 7;,, and identify the ATT. From this
simple observation, a natural question that arises is: How can we combine these two strategies
to obtain an efficient estimator for the ATT? The next theorem addresses this question through
the lens of semiparametric efficiency theory. Specifically, we derive the EIF for the ATT under

Assumptions 1 and 2, as well as its semiparametric efficiency bound. This bound represents the

3 See Lemma A.1 in Appendix A for the formalization of these results.



maximum precision achievable in this context under the given assumptions. As so, it provides a
benchmark that researchers can use to assess whether any given (regular) semiparametric DiD
estimator for the ATT fully exploits the empirical content of Assumptions 1 and 2.* Hereafter,
let 74, (Y, X) =Y — (mq1,0(X) + (mo1(X) —mgo(X))) and W = (Y, D, X, T). We also denote
the ATT by 7.

Theorem 1 (Semiparametric efficiency bound) Suppose Assumptions 1 and 2 hold. Then, the
EIF for 7 is given by

Net(W) = w11 (D, T) (70 (V. X) =)+ > (1) wg (D, T, X)(Y —mas(X)),  (2.5)
(d,t)eS—
where the weights are defined in (2.4). Furthermore, the semiparametric efficiency bound for

the set of all regular estimators of 7 is

op_ 1 T, — )
E[neﬁ(W)]—E[DT]QE DT (14 (Y, X) — 7) +(d’§s

[d,t : p(L 17 X)2

pld, t, X)? (¥ = ma (X))

Apart from providing an efficiency benchmark, Theorem 1 also provides us a template to
construct efficient estimators for 7. That is, given that any influence function has a mean of
zero, we can take the expected value of n.g(W) and isolate T to get the following estimand for
the ATT

=7 =E | w (D, ) (Y, X)+ >, (=) Dwg, (D, T, X)(Y = mau(X)) | . (2.6)
(d,t)eS—

We discuss in Section 3 how to leverage (2.6) to nonparametrically estimate 7 under mild

assumptions.

2.3 Bias-Variance trade-off with respect to stationarity

All the estimands described in Section 2.2 account for compositional changes over time. As
discussed the introduction, most DiD estimators typically assume no compositional changes
a priori. A natural question then arises: How biased would these estimators be when they
erroneously rule out compositional changes?

To tackle this question, we examine the bias of the semiparametrically efficient DiD estima-
tor for the ATT proposed by Sant’Anna and Zhao (2020) that rule out compositional changes.
Before diving into this analysis, we need to introduce some additional notation and clarify the
assumptions, estimands, and other aspects of Sant’Anna and Zhao (2020)’s approach.

First, Sant’Anna and Zhao (2020) explicitly rules out compositional changes by relying on

the following stationarity assumption.

4 To simplify exposition, we abstract from additional technical discussions related to the conditions to guarantee
quadratic mean differentiability and their implications for the precise definition of EIF; see, e.g., Chapter 3
of Bickel, Klaassen, Ritov and Wellner (1998) for more details.
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Assumption 3 (Stationarity) (D, X) L T.

Intuitively, Assumption 3 enables researchers to pool covariates and treatment variables from
both periods. As a result, under Assumption 3, it follows that E [D|X,T = 1] = E[D|X] =
p(X), which also affects the definition of the “relevant” propensity score. Indeed, as discussed
in Sant’Anna and Zhao (2020), one can identify the ATT under Assumption 3 using the IPW

estimand
Tipwmcc = ]E’ [(wizl(Dv T’ X) - QUiZO(D, T: X) - wgfl(Dv T7 X) + wS,ZO(D7 Tv X)) Y] ) (27)

where, for t = 0,1,

. DT =1
wi (DT, X) = E[D-1{T =t}]’

o _ X)(A-D)- T =1t} pX)1—-D)- T =1t}

wi (D1X) = e

see also Abadie (2005). When one compares the IPW weights in (2.7) with the IPW weights in
(2.3), it is clear that w(?(-) = wy1(-) whereas the remaining three IPW weights differ. Under
Assumption 3, one only needs to consider binary propensity score models, and use these simpler
functions to construct IPW weights for untreated units (in both periods) in (2.8). When one
allows for compositional changes such that Assumption 3 is potentially violated, the distribution
of the covariates may vary over time. Thus, one needs to consider generalized propensity scores,
as now one has four groups depending on the treatment group and the period that a unit is
observed. This affects the IPW weights in (2.4) not only for the untreated units, but also for
the treated units observed only in the pre-treatment period. This discussion sheds light on how
Assumption 3 “simplifies” the construction of IPW estimators.

We note that Assumption 3 also allows one to leverage more data than (2.2) when construct-
ing an outcome regression estimand. More precisely, under Assumption 3, one can identify the

ATT using the following regression-based estimand®
Tornece = E [Y‘ D = 17 T = 1] —-E [ml,O(X) + mO,l(X) - mO,O(X)‘ D = 1] ) (29)

see, e.g., Sant’Anna and Zhao (2020). To see the difference between (2.9) and (2.2), note that
the last term in (2.9) integrates the covariates X using the distribution of treated units from
both periods, i.e., the pooled treated distribution. This is valid under Assumption 3. When
one allows for compositional changes over time, as in (2.2), one needs to integrate over the
covariate distribution among treated units observed in the post-treatment period only.

Just like in Section 2.2, one can combine 7y pee and Tipy nee to get more efficient estimators

under Assumption 3. Indeed, Sant’Anna and Zhao (2020) show that, under Assumptions 1, 2,

5 Under Assumption 3, one can also use the alternative regression-based estimand that leverages more data
than 7o, nee defined as Topnee2 = E[ma1(X) — myo(X) —mo1(X) + moo(X)| D =1]. We do not discuss
this further as we directly address estimators based on the EIF in (2.11).



and 3, the EIF for the ATT is given by

1) = g (700 = 7) 4 X OO ION —ma(0), (1

where 7(z) = (my1(x) —myo(x)) — (mo1(x) —mgo(x)) is the conditional ATT. Based on (2.10),
Sant’Anna and Zhao (2020) propose the following DR estimand for the ATT,

7. =E T(X)+ ) (D) wE(D, T, X)(Y = may(X)) | - (2.11)

E[D] (d,t)eS

Heuristically, 75, can be viewed as the analog of 74. when, on top of the identification assump-
tions, one assumes that there are no compositional changes. Compared to 74, it is based on
binary propensity scores and integrates the conditional ATT using data from both time periods.

The following proposition shows that 7., does not recover the ATT when Assumption 3
is potentially violated, i.e., under compositional changes. It also precisely quantifies the bias

relative to 7y,.

Proposition 1 Under Assumptions 1 and 2, we have that

+ Z (dH [(wfl;zt(Dv T, X) B wd,t(Dv T, X)) (Y o md’t<X))]
(dt)eS—

=E[r(X)|D =1] - E[r(X)[D =1,T = 1]
=E[r(X)|D =1] — 1.

Proposition 1 provides bias decomposition for 7,, when the stationarity assumption is not
imposed. The first equality in Proposition 1 follows from a direct comparison between our
proposed estimand for the ATT and the one proposed by Sant’Anna and Zhao (2020), while
the second equality is a consequence of the law of iterated expectations.® The third equality is
due to the definition of ATT and Assumptions 1 and 2. These calculations show that Sant’Anna
and Zhao (2020)’s DR DiD estimand for the ATT can be biased when Assumption 3 is violated.
In contrast, our proposed estimand 7y, is fully robust against compositional changes.

Proposition 1 also highlights that not all violations of Assumption 3 result in biases in ATT
when using Sant’Anna and Zhao (2020)’s estimand. Although intuitive and simple, this insight
seems to be new in the literature. Based on this observation, one can determine if violations
of Assumption 3 lead to empirically relevant biases in the ATT by comparing nonparametric

estimates based on 7, with those based on our proposed estimand 74,.. This would detect only

6 Here, we are implicitly considering the case where there are no (global) model misspecifications, which aligns
with the fully nonparametric approach we adopt. One can compute a similar bias decomposition when
one adopts parametric working models for the nuisance functions, though the notation becomes much more
cumbersome.



the “relevant” violations of Assumption 3 that affect the target parameter of interest. That is,
it would concentrate power in the directions that one cares about in this context. We discuss
this testing procedure in greater detail in Section 4.

At this point, one may also wonder what the price one pays for such robustness in terms
of semiparametric efficiency. Specifically, how much efficiency one loses by using 74 when As-
sumption 3 holds but is not fully exploited. The next proposition compares the semiparametric
efficiency bound derived in Theorem 1 with the one derived by Sant’Anna and Zhao (2020).

Proposition 2 (Efficiency loss under stationarity) Suppose that Assumptions 1, 2, and 3
hold. Then
1 - E[T]

oz = Elnea(W)) = Elne(W)*) = gy

Var [r(X)|D = 1], (2.12)

It is evident from Proposition 2 that our proposed estimator is asymptotically less efficient
than the one proposed by Sant’Anna and Zhao (2020) when there are no compositional changes
over time. The efficiency loss is greater if any of the following three quantities is larger: 1) the
population ratio of the pre-treatment period vs. the post-treatment period, 2) the population
proportion of the comparison group vs. the treated group, and 3) the expected variability of
treatment effect heterogeneity among the treated. In the extreme case where the treatment
effect on the treated is homogeneous, our ATT estimator would achieve the same efficiency
level as the one that imposes stationarity a priori. However, we imagine this case is not very
realistic.

Propositions 1 and 2 characterize a bias-variance trade-off. Although our proposed estimand
for the ATT is robust against Assumption 3, there is an asymptotic efficiency loss of not

exploiting Assumption 3 when it does hold. We revisit this trade-off in Section 4.

3 Estimation and inference

The results from Section 2.2 suggest one can estimate the ATT by building on the EIF
derived in Theorem 1, as emphasized by (2.6). The results from Propositions 1 and 2 also
suggest a testing procedure to assess whether compositional changes translate to biased ATT
estimates. However, all the discussions so far have involved estimands that depend on unknown
nuisance functions, and we have not yet discussed how one can estimate these to form feasible
two-step estimators. This section discusses how to proceed when adopting a fully nonparametric
approach, avoiding additional functional form assumptions.

We first present a generic result that emphasizes that estimators based on (2.6) possess a rate
DR property, regardless of how the nuisance functions are estimated nonparametrically. Since
we employ a nonparametric estimation procedure, model misspecifications are not a primary
concern, at least asymptotically. This suggests that the traditional notion of DR estimators that
leverage potentially misspecified parametric working models, is unsuitable for our procedure.

However, we recognize that different nonparametric estimators may exhibit varying convergence
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rates for the nuisance parameters. Instead of requiring that both nonparametric models for
the nuisance parameters converge to their true values sufficiently fast (i.e., the differences are
0,(n~*)), our rate DR property relies on weaker conditions that allow for a trade-off between
the convergence rates of the two nuisance estimators. Heuristically, the rate DR property
implies that nonparametric DiD estimators for the ATT based on the EIF are y/n-consistent
and asymptotically normal even if one of the outcome regression or generalized propensity score
functions is very complex provided that the other is sufficiently simple. For more discussions on
rate DR, see, e.g., Kennedy (2016, 2023), Smucler et al. (2019), Rotnitzky, Smucler and Robins
(2021), Jordan, Wang and Zhou (2022), and Bonvini, Kennedy, Dukes and Balakrishnan (2024).

Although interesting and useful, this generic rate DR is agnostic about the choice of the
nonparametric estimator for the nuisance functions, and, therefore, does not help us with
practical inference procedures. Towards that end, we discuss how one can concretely estimate
the generalized propensity score (PS) and outcome regression (OR) nuisance functions using
local polynomials, even in the presence of discrete covariates. We then establish the large sample
properties of our DR DiD two-step estimator for the ATT based on local polynomials. We
provide a data-driven bandwidth selection method in Subsection 3.4. We defer the construction

of the Hausman-type test for compositional changes to Section 4.

3.1 Rate doubly robust

Let p, and mg; be generic estimators of p, and mgy, for (d,t) € S_. Given these first-step

estimators, our proposed two-step estimator for the ATT based on (2.6) is given by

Far = B | D10 (D, T)R(Y, X))+ Y (=) g y(D, T, X)(Y — ias(X)) |, (3.1)
(d,t)eS—

where ?(Y,X) =Y — (7/7\1170()() + (ﬁ”loJ(X) — fl\’L(),Q(X))), and, for (d, t) € S,,

DT
o (D.T) = —2= 2
1D, 1) = o (32)

~ Idt'ﬁ(1717X) [dt'ﬁ(]-a]-?X)

D.T.X) = % E, | %L . 3.3

0ay(D, T, X) p(d, 1, X) 7(d,t, X) (3:3)

We impose the following assumptions on the quality of nuisance function estimators. We
let || fll,, = (§ f2dp) 2 and I fll., = supgex | f(z)| denote the Lo- and sup-norm of a function
f, respectively, and let G,,(-) denote the empirical process v/n (E, — E) ().

Assumption 4 (Estimation of nuisance parameters)

1. The estimators p and m are uniformly convergent in the sense that

IPC, ) =Pl = 0p(1), - e [l () = mae(:)ll, = 0p(1).
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2. For (d,t) e S_,

~
.
~—
=

a[ (Y = mas (X)) - (@ae — wae) (W)] = 0,(n”"2).
al(w11 = wa)(W) - (Mg —mae) (X)] = 0p(n~ %)

o (B - i) (- man (O} = 0,00,

—~
~.
~.

~—~—
=

ﬁ(d7 t? X) p(d7 t7X)

3. Var[Y|D =1,T =1] < o0 and Var[Y|D =-,T =t,X = z] is bounded uniformly over
X, for (d,t) e S-.

These high-level conditions ensure that the functional space containing the first-stage esti-
mation error does not become excessively complex (see, e.g., Kennedy, Ma, McHugh and Small
(2017)). The verification of these conditions depends on the type of first-step estimators em-
ployed. In our paper, we utilized leave-one-out kernel estimators and relied on arguments based
on U-statistics to verify the conditions. Cross-fitting is another popular approach, particularly
due to its compatibility with double machine learning estimators and high-dimensional feature
spaces. The assumptions can be significantly simplified when using cross-fitting estimators. A
detailed explanation of the assumption simplifications and their implications for the error rate
is provided in Appendix 7.1.

Let (7n)n=1 and (s,)n>1 be positive sequences converging to zero such that

max [[p(d, ;) = pld,t, )l = Op(ra).

S N
(cirtl)%‘}é, 14 () = mas ()l p(Sn),

where e = Lo or 0.

Lemma 3.1 (Doubly Robust error rate with generic first step estimators) Suppose
that e = o0, and that Assumptions 1, 2, 4.1 4.2(i, ii), and 4.3 are satisfied. Then,

~ I _
Tar =7 = ;neﬁ(VVi) + Oy (Tnsn) + 0p (n 1/2) ) (3.4)

Furthermore, if Assumptions 4.2(iii)-(v) are also fulfilled, the equation (3.4) remains valid when
€ = LQ.

The lemma demonstrates that our estimator is doubly robust in terms of its convergence
rate. The remaining term is the product of the error rates of the first-stage estimators. Due
to the product structure, each estimator typically needs only to converge to its true value at a
rate of o(n~'/%) for the ATT estimator to converge at the parametric rate. This property also

allows for a trade-off between precision in the two nuisance estimators.
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In the following subsection, we present lower-level conditions for cases in which the nui-
sance functions are estimated nonparametrically using leave-one-out local polynomial estima-
tors. This technique enables us to directly establish the conditions in Assumption 2 without
relying on empirical process theory. This is desirable, as verifying the complexity of the space

where local polynomial (logistic) estimators reside is not a trivial task.

3.2 Local polynomial estimation of nuisance functions

We first introduce the estimator for the PS functions. Conditional probability functions are
naturally bounded within the unit interval. However, these bounds may not be respected when
using linear probability models. As a nonparametric generalization of parametric multinomial
logit regression, local multinomial logit regression enforces such bounds by design. Through
extensive Monte Carlo simulations, Frolich (2006) demonstrates that the local multinomial logit
estimator consistently outperforms local least squares, Klein—Spady, and Nadaraya—Watson
estimators. Hence, we prefer this estimator over other nonparametric methods.

Without loss of generality, the generalized PS can be represented by a multinomial logistic

transformation applied to a set of unknown functions {ga:(-)}(aes_ as follows

) - elle)
L+ X imes. exp(ga v ()

for (d,t) € S_, and p(1,1,z) = (1 + 2 yes. exp(gd/,t/(a:))> . The representation is well-
defined as long as the overlapping condition in Assumption 2 (iii) holds. Instead of imposing
specific functional forms on { gdvt(-)}(d,t)e‘g_, the local multinomial logit estimator approximates
these unknown functions locally using polynomials, which we will describe in detail below.

In accordance with the conventions of local polynomial estimation, we adopt the following

notations as shorthand for common vector operators,

<

k= (ki,...k,), |k = Zkf, k! = ]_[kg, ok =T,

0% f(x)
(k) — =
fH() (91:11“ - ﬁx? coe Qe ’ Z

Furthermore, we define n;, = (k;ﬁl) as the number of distinct ¢-tuples k with |k| = k. We
arrange these ny (-tuples in a lexicographically-ordered sequence, prioritizing the last position,
and denote the mapping from the rank in the ordered sequence to the corresponding (-tuple as
7 (+).

Since our method accommodates both discrete and continuous covariates, we must distin-
guish between these types of variables. We assume that = = (x., z4), where z. is a v.-vector of
continuous covariates, and x4 is the subvector of discrete variables. We also distinguish between

ordered and unordered discrete variables. That is, x4 = (z,,,), where z, is a v,-vector of
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unordered covariates and z, is a v,-vector of ordered covariates.
Now, for a generic function, g : X — R, and a point, * € X, g(-) can be approximated in

a neighborhood of z* by a p-th order Taylor series with respect to the continuous variables, as

o)~ Y o e~ ) = X)),
0<|k|<p
where X(z.) = (XY (z,), ..., X" (z,))" is a N, x 1 vector that contains the sorted (X, — z.)¥,
with N, = Y7 _,ng. The I-th entry of X(k)(mc), denoted as XV (z.), is equal to (X, — z.)™".
The vector v,(z) = (wéo)/( )y ,7_§p )l(x))’ is defined as the vector of lexicographically-ordered
k) (7)/k!.
The local approximation is achieved through kernel smoothing. For continuous variables, we
let the kernel function be denoted by K7(u), j = ps,or. It is a nonnegative function supported
n [—1,1]%. Suppose h > 0 is a generic bandwidth parameter. We denote the scaled kernel
function by Kj(u) = K (u/h)/h¥. We use the kernel function proposed by Li and Racine
(2007) for discrete variables. This kernel function is defined as

NC vaﬁmqum%s (3.5)

where A = (\,,\,) € [0,1]? is a generic smoothing parameter. When A\ = 0, the estimator
reduces to the frequency estimator.”
For the j-th observation of covariates, X, our local polynomial (multinomial) logit estimator

of 7, denoted by 7, satisfies

?(Xj)E(%U(Xj),%,1(Xj),’%,o(Xj))'=argr;}vaxn_ 25 Kpo(Xi; X5, b, 2), (3.6)
yeR®Yp i#£]

where I?ps(Xi;Xj,h, A) = K (Xei— Xc;) La(X4,Xa;) and the local likelihood function

l(w,x;7) is defined as

U(w, x;7y) = 2 I3 X (xe) yar —log | 1+ Z exp (X, (ze) yarv)
(@,t')es— (d',t)eS—

Note that we have used a “leave-one-out” version of the local regression estimator for the
construction of 7, ie., 7(X;) are estimated using every observation except the j-th. This
technique, standard in the literature (Powell and Stoker, 1996; Powell, Stock and Stoker, 1989;
Rothe and Firpo, 2019), serves to avoid a “leave-in” bias that is of first-order importance when
estimating the ATT.

Let ey denote an (-dimensional vector in which the k-th element is set to one, while all

7 Here, we adopt the convention that 0° = 1, ensuring the estimator remains well-defined even when x4 = z4.
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remaining elements are zero. Then, for a given 7, the generalized PS can be approximated by®

eXP(eM,ﬁd,t(ff))

L+ 2 ines. eXp(‘??vp,fAYd/,t'(fI?))’

for (d,t) e S_, and p(1,1,2) =1 — Z(di)e& p(d,t, ).
For OR models, we employ leave-one-out ¢-th order local polynomial least squares estima-
tors. First, the local polynomial regression coefficients are estimated by solving the following

equation:

S i 1 & ~
5d,t(Xj) = argimn 1 Z (Yi -X i(Xc,')/6)2 [d,t,iKor(Xi; X, bt l9d,t)> (3-8)

— —q,
BeRNp n i)

Where kor(Xi;Xjabd,taﬁd,t> = KOT (Xc,i — Xc,j>L19d’t(Xd7Xd,j>7 and [d,t,i = ﬂ{Dl = d,ﬂ = t}

ba,¢

Then, we estimate the OR functions by
Ma(X;) = e, 1Baa(X)), (3.9)

for (d,t) e S_.

We analyze the asymptotic behaviors of these local polynomial estimators in Appendix B.
We provide results on the uniform convergence rate for the approximation error. In particular,
we establish a uniform stochastic expansion for the local multinomial logit regression that is of

independent interest.

Remark 1 The choice of polynomial order depends on considerations such as computational
tractability and the trade-off between bias and variance properties. We adhere to the recom-
mendation made by Fan et al. (1995) to employ odd-degree polynomial fits, as they simplify
the analysis for the boundary bias when using symmetric kernel functions. We allow varying
local polynomial orders for the PS and OR estimators and, in the case of the latter, for distinct
treatment groups. This flexibility is desirable as the propensity score and conditional mean

functions might display varying degrees of smoothness.

3.3 Asymptotic normality

With {Mg¢}(aes. given in (3.9), and p defined in (3.7), we can construct an estimator for
T4 as shown in (3.1). In the following, we derive the large sample properties of the estimator 7,
by applying Lemma 3.1. To achieve this objective, we begin by presenting a set of regularity
assumptions. Henceforth, we use B (z,9) to denote a ball centered at x with radius J, and

Amin(A) to represent the smallest eigenvalue of a square matrix A.

Assumption 5 (Support, smoothness, integrability, kernel, and bandwidth conditions)

8 We abuse notation and denote the local polynomial estimators for the generalized propensity score as p and
for the outcome regression as m, which are the same as the generic estimators introduced in Section 3.1.
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1. (i) X = X, ® &, where X, is a compact subset of R and Xj is finite; (ii) For all
xq € Xy, P(X4 = x4) > 0, and the conditional probability density of X., fx x,(:|zq), is
continuously differentiable and bounded away from zero on X,; (iii) There are positive
constants ko and s in (0,1] such that for any = € X and all € € (0, kg], there exists a

r’ € X satisfying, x/, = x4, and

B (2, ki€) « B(x,€) n X.

2. Forallz € X, (i) p(d,t,x) is (p+1)-times continuously differentiable in z., with uniformly
bounded derivatives, for (d,t) € S; (ii) ma.(x) is (¢ + 1)-times continuously differentiable

in x., with uniformly bounded derivatives, for (d,t) e S_.
3. E[|[Y]¢|X,D,T] < o a.s. for some constant ¢ > 2.

4. For j = ps,or, (i) K7 : [-1,1] — Ry; (ii) K’(-) satisfies the Lipschitz condition, i.e.

|K7(u) — K’(1')| < L ||ju —v’| for some L > 0 and any u, u’ € R%

5. () h = o(1); (i) logn/ (nh**?) = o(1) and \/h? = o(1); (iii) A**' = o(n"/*) and
logn/ (nhv) = o (n=Y?). For (d,t) € S_, (iv) bay = o(1); (v) logn/ (nl_z/cbgft) = o(1);
() B = 0 (n) and o/ () = o (n-1); (vi) A, = ol

6. With Q;(x.) defined in (B.6), inf, cx, Anin (Q;(z.)) > 0, for j = p, q.

A few remarks on the assumptions are in order. Assumption 5.1 indicates that our local
polynomial estimator can handle discrete, categorical data. The final part of the condition,
proposed by Fan and Guerre (2016), requires that the boundary of X is sufficiently dense
for the first-stage estimators to exhibit good bias and variance properties near the bound-
ary. Importantly, this has to hold for all covariates.” Assumption 5.2 describes the standard
smoothness condition for the nuisance functions. Assumption 5.3 is a regularity condition that
controls the conditional moments of Y. Assumption 5.4 collects the regularity conditions on
the kernel functions. We note that different kernels can be used for the propensity score and
conditional mean models. In practice, the kernel K(-) typically takes a product form, that
is, K(u) = [[;°; K(u;), where K(-) can be chosen from several options, such as triangular,
biweight, triweight, or Epanechnikov kernels. However, the Gaussian kernel is ruled out due
to the restriction on compact support. Assumption 5.5 compiles the rate condition on the
bandwidths. Assumptions 5.5 (ii) and (v) are imposed to ensure linear expansions of the local
polynomial estimators hold uniformly over X. When Y has finite moments of any order, such
as when it has bounded support, Assumption 5.5 (v) is implied by Assumption 5.5 (vi). As-
sumptions 5.5 (iii), (vi), and (vii) specify rate conditions on the bias and stochastic part of the

first-step estimation error.

9 If this denseness condition does not hold in practice—for example, if the data is very sparse near the boundary
of covariates—it may be necessary to restrict the analysis to interior points and impose trimming when
estimating treatment effects.
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It is important to note that our estimator builds on the efficient influence function and,
therefore, inherits a rate DR property. Without such a DR property, it would typically require
more stringent rate conditions on the bias part, which can only be satisfied with higher-order
kernel functions. Heuristically, this follows because one needs to ensure that the nonparametric
estimator converges fast enough. See, for example, Newey (1994) and Lee (2018) for detailed

discussion. The rate DR property relax this condition.

Remark 2 Rothe and Firpo (2019) provides a result that can be applied to weaken the rate
conditions on the nuisance functions. They present higher-order expansions of semiparametric
two-step DR estimators, demonstrating that if the first-step error’s bias and the stochastic
components are of order o,(n~Y/%), and their product is of order o,(n~'/2), the resulting DR
estimator achieves root-n consistency. To maintain focus, we will not delve into an in-depth

discussion on this topic.

Theorem 2 (Asymptotic normality doubly robust estimator) Under Assumptions 1, 2, and

5, we have

Gy —7) = %ﬁgneff(vm +0,(1) 5N (0, 2u), (310
where Qg4 = E[n.g(W)?].

Theorem 2 states that 7, is root-n consistent, and asymptotically normal. It also shows
that the estimation error of the nuisance functions does not affect the asymptotic distribution
of 7y.. Furthermore, the asymptotic variance of 7. is equal to the semiparametric efficiency
bound.

The theorem can be applied to calculate confidence intervals for the ATT. To achieve this,
we need an estimator of the asymptotic variance, 245.. One approach to constructing such
an estimator is by using empirical analogs of the influence function or through bootstrapping.
Here, we focus on the first method, while a weighted bootstrap procedure that accommodates

clustered inference is provided in Appendix C.6. Let

Net(W) = 2 (=) g (D, T, X)(Y — g (X)) + @01.1(D, T, X)(F(Y, X) — 7ap),  (3.11)
(d,t)eS—

and @dr = E,[7.(1W)?]. Under mild regularity conditions, the consistency of ﬁdr can be

established, with its proof included in that of Theorem 3 presented in the following section.

3.4 Bandwidth selection

This subsection addresses the practical selection of bandwidth for the first-step local poly-
nomial estimators. It is well-documented that smoothing parameters have a significant impact
on balancing the trade-off between bias and variance. Although robustness checks employing
multiple bandwidths can be useful, a reliable data-driven selection rule is often preferred. In

the following, we outline two cross-validation procedures for choosing these tuning parameters.

17



Define the following two criterion functions

CE(hy A, {bagVas}dpes.)

1 « ~ ~
= =200 2 ai =Pt X))+ D0 Lags(Yi—mas(X0))* 0, (3.12)

i=1 | (d,t)esS (d,t)eS—

O;nl(h, /\7 {bd,t/&d,t}(d,t)es_)

1 & ~ ~
=—Z - Z Iiilog(p(d,t, X)) + Z Lii(Yi — ma(X0)? 3. (3.13)
3| (does (d,)es_

The least-squares criterion, C'* is a standard choice in the kernel estimation literature. It is
based on the sum of the least squares distances between the observed and leave-one-out fitted
values for both PS and OR estimators, The second criterion, C"™, replaces the PS estimator’s
least squares sum with that of the observed likelihood. This idea of using a likelihood-based
criterion in local logistic estimation can be traced back to Staniswalis (1989).

The leave-one-out cross-validated bandwidths, (lAﬂ N, {gé’t,1§£7t}(d7t)eg), minimizes C for
j =ls,ml. In Appendix C.2, we analyze the mean integrated squared error (MISE) properties
of the first-step estimators and derive the convergence rates of the optimal bandwidths. For
local linear estimation (i.e., p = ¢ = 1), Theorem C.1 shows that the optimal bandwidths
ensure the rate conditions in Assumption 5.5 are satisfied if the number of continuous variables

is less than 4. Notably, this result imposes no restrictions on the number of discrete variables.

Remark 3 Leave-one-out cross-validation can be computationally demanding when combined
with local multinomial logit estimation. This is partly because, unlike local least squares
regression, local multinomial logit regression does not have a closed-form solution. As a result,
evaluating the criterion function requires solving n minimization problems, which can be time-
consuming, especially for large datasets. To mitigate this computational burden, we propose
using the rescaled cross-validation method introduced by Li, Li and Li (2021), as described in
Appendix C.4. This method divides the data into training and validation sets and computes the
multinomial logistic loss using only the validation data, significantly reducing the computation

cost.

4 Testing for compositional changes

Propositions 1 and 2 reveal that our proposed estimator for the ATT is robust against
compositional changes; however, it is less efficient than the DR DiD estimator proposed by
Sant’Anna and Zhao (2020) when the covariate-stationarity assumption is correctly imposed.
This trade-off suggests a nonparametric Hausman (1978)-type test for the absence of composi-
tional changes can be constructed by comparing our proposed estimator with that of Sant’Anna
and Zhao (2020). Although Sant’Anna and Zhao (2020) focus on parametric first-step estima-
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tors for the nuisance parameters, we modestly extend their analysis by considering nonpara-
metric first-step estimators in this section.

Before detailing the test construction, we define the null and alternative hypotheses. Let
Py = {P € P : Assumptions 1, 2, and 3 hold, and Varp [7(X) | D = 1] > 0} and P, = {P €
P : Assumptions 1 and 2 hold, and 74, # 4.}, where 74 and 7, are defined in (2.6) and (2.11),

respectively. Here, we aim to test
H[Lp :Pe PQ against Hl,P :Pe Pl-

We index the hypotheses with P to emphasize the point-wise nature of our test—namely, that
it applies to a fixed data-generating distribution P € P. Under the null hypothesis, Sant’Anna
and Zhao (2020)’s DR DiD estimand coincides with our proposed estimand, so that 7, = 74.. In
this setting, both estimands identify the ATT, though their estimator (asymptotically) achieves
the semiparametrically efficient bound. Under H; p, Sant’Anna and Zhao (2020)’s DR DiD
estimator is not consistent for the ATT, while ours remains consistent and is (asymptotically)
semiparametric efficient. Finally, we note that for distributions satisfying Assumptions 1 and
2, the alternative hypothesis space constitutes only a subset of the complement of the null
hypothesis space. This occurs because the two ATT estimators can still coincide, even when
the stationarity assumption is violated. We concentrate on this subset of hypotheses to test
deviations where the stationarity assumption influences the target parameter of interest.

To operationalize this testing procedure without invoking additional parametric assump-
tions, we require a nonparametric estimator for 7,,, which in turn necessitates nonparametric
estimators for the PS p(-) and the OR functions mg.(-), (d,t) € S. For the PS, we can use the

local polynomial estimators from Section 3.2 to construct an estimator for p(-) as
p(X) =p(1,1,X) + p(1,0,X),

where p(1,¢, X) is given by (3.7). We can estimate the OR mg;(-) as in (3.9), noting that all
four conditional mean functions must be estimated here (unlike the three in Section 3). Using

these, we nonparametrically estimate 75, by

~ D d+t
7. =K, WT(XHW%;S(— 055D, T, X)(Y — (X)) | - (4.1)

where 7(x) = (M1 1(z) — My o(z)) — (Mo1(x) — Mop(x)), and, for t = 0,1,
D 1{T =t}
E,[D - ]1{T _—tk

arx) = X >< ﬂ{T—t}/ [ D)- LT =)
1—p(X)

wiy (D.1,X) =

Given this nonparametric estimator for 7y, and our nonparametric estimator for 4. in (3.1),
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the test statistic is defined as

A~

T =0V (G — 7)), (4.2)

where

~

Vo = E, [(fls(W) — s (W))°]
with 7eg(W) defined in (3.11) and

ﬁsz(W) =

(F(X) = 7) + Y, (D DED, T, X)(Y = iae(X)).  (43)

En [D] (dt)eS

XA/n estimates the variance of the difference between the two DiD estimators for the ATT.
While an alternative variance estimator could be constructed using the variances of each DiD
estimator, i.e., V,, = Qu — Q,., with Qg = E,.[7es(1W)?] and Q.. = E,.[7s.(W)?], this approach
may yield negative variance estimates in finite samples. Using \A/n avoids this drawback.

In the following theorem, we characterize the asymptotic behavior of this statistic. Let cj_,

denote the (1 — «)-th quantile of the chi-squared distribution with one degree of freedom (i.e.
X3)-
Theorem 3 Suppose Assumption 5, and in addition, Assumptions 5.2(ii) and 5.5(iv)-(vii) are
fulfilled for (d,t) = (1,1), for P € P. Then:
(a) Under the null hypothesis, Hy p, we have vV, 2 ps. > 0, and

lim P (7, = c¢f_,) = o (4.4)

n—0o0

(b) Under the alternative hypothesis, H; p, we have

lim P (7, > ¢ ,) =1 (4.5)

n—o0

The theorem states that the test controls size and is consistent. Although not discussed in
detail here, it is easy to show that our test also has power against sequences of Pitman-type

local alternatives that converge to the null at the parametric rate.

Remark 4 It is crucial to recognize that our test should be viewed as a “model validation”
instead of a “model selection” procedure. For researchers concerned about the validity of As-
sumption 3, it may be tempting to perform a two-stage test. In the first stage, a Hausman
specification test is used to “pretest” for the presence of compositional changes, and then, in
the second stage, the usual ¢-test is conducted based on either 7,4 or 7., depending on the
outcome of the Hausman-test. However, as demonstrated by Guggenberger (2010a), Guggen-
berger (2010b), and Roth (2022), such a model-selection procedure can lead to substantial size

distortions when using standard inference methods.
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5 Monte Carlo simulation study

In this section, we examine the finite sample properties of our proposed estimators and
testing procedure. We conduct two main Monte Carlo experiments in this section. In the
first experiment, there are compositional changes over time, so Assumption 3 is violated. In
contrast, the second experiment adheres to this assumption, maintaining a joint distribution of
covariates and treatment that is independent of treatment timing. For each design, we compare
our nonparametric DR DiD estimator 7,4, defined in (3.1), which is robust against compositional
changes and semiparametrically efficient, with the nonparametric extension of Sant’Anna and
Zhao (2020)’s estimator 7,, defined in (4.1), which assumes no compositional change, and with
the estimates of the regression coefficients, 7., associated with two-way fixed effect (TWFE)

regression specifications of the type
Y=o+l +a3D+74%(T D)+ 0'X +e.

We consider two TWFE specifications: 1) a linear specification, where all the covariates X enter
linearly, and 2) a saturated specification, where, in addition to the linear terms, quadratic terms
of the continuous covariates and all the interactive terms of the covariates are also included.
We include the TWFE specifications in our comparison set as they are prominent in empirical
work.

We employ local linear (p,q = 1) kernel estimators for both the PS and OR functions.
As described in Section 3.2, the PS is estimated using the local likelihood method with the
(multinomial) logistic link function, whereas the OR is estimated using the local least squares
estimator. We utilize the second-order Epanechnikov kernel for the continuous covariates, and
the kernel given in (3.5) for discrete variables. Bandwidth selection methods are explored in
detail later in this section.

Our main experiments involve a sample size of n = 1000, with each design undergoing 5, 000
Monte Carlo replications. We evaluate the DiD estimators for the ATT using various metrics:
average bias, median bias, root mean square error (RMSE), empirical 95% coverage probability,
the average length of a 95% confidence interval, and the average of the plug-in estimator for the
asymptotic variance. Confidence intervals are calculated using a normal approximation, with
asymptotic variances estimated by their sample analogues. We also compute the semiparametric
efficiency bound for each design to gauge the potential loss of efficiency /accuracy associated
with using inefficient DiD estimators for the ATT. We perform a Hausman-type test as described
in Section 4 under each design and report the empirical rejection rates.

In addition to these two main experiments, we further investigate the power properties of
our Hausman-type test by examining its performance under a sequence of local alternatives.
Finally, we evaluate the performance of our estimator under different bandwidth selection
methods, comparing leave-one-out cross-validation (LOOCV), rescaled cross-validation (RCV),

and a plug-in estimator.
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5.1 Simulation 1: non-stationary covariate distribution

We first consider a scenario in which the stationarity condition is not satisfied. The DGP
is described in Appendix C.3. Under this design, the covariate distribution does not exhibit
time variation. However, the PS function is different in the two cross-sections. The mean
absolute difference between p**(1,1, X) and p*'(1,0, X), as well as between p*'(0,1, X) and
p*1(0,0, X), are both approximately 0.125, with the maximum difference reaching up to 0.63.'
Consequently, we expect all estimators to produce biased results, except for 74.. In addition,
the stationarity test is likely to reject the null hypothesis with high probability. The results in
Table 1 support these claims.

Table 1: Monte Carlo results under compositional changes. Sample size: n = 1, 000.

True value of ATT: 4.31. Semiparametric Efficiency Bound: 1753.6

Two-way Fixed Effect Estimators

Spec. Avg. Bias Med. Bias RMSE Asy. Var. Cover.  CIL
Tre Linear -10.437 -10.445 10.933 10425.033 0.121  12.633
Tre Saturated -11.176 -11.206 11.579 8797.289 0.045 11.612
Nonparametric Doubly Robust DiD Estimators for the ATT

CV Crit. Avg. Bias Med. Bias RMSE Asy. Var. Cover.  CIL

Tar ML -0.009 -0.010 1.374 1838.495 0.949  5.304
Tar LS -0.013 -0.010 1.379 1848.848 0.949 5.314
Tez ML 4.427 4.436 4.543 983.436 0.009  3.884
Tz LS 4.427 4.435 4.543 983.746 0.009  3.884

Hausman-type test
CV Crit.  Avg. Test Stats. Emp. Pow. (0.10) Emp. Pow. (0.05) Emp. Pow. (0.01)

ML 21.250 0.998 0.996 0.978
LS 21.199 0.998 0.995 0.976

Note: Simulations based on 5,000 Monte Carlo experiments. 77, the TWFE regression estimator, 74, is our proposed nonparametric
DR DiD estimator (3.1), and 75, is the nonparametric DR DiD estimator (4.1) based on Sant’Anna and Zhao (2020). For TWFE re-
gression, we use a linear specification, “Linear”, and a saturated specification, “Saturated”. For DR DiD estimators, the PS and the OR
models are estimated using a local linear least squares and a local linear logistic regression, respectively. Bandwidth for the PS function
is selected with the log-likelihood criterion, “ML”, and the least squares criterion, “LS”, respectively. Lastly, “Spec.”, “CV Crit.”, “Avg.
Bias”, “Med. Bias”, “RMSE”, “Asy. Var.”, “Cover.”, and “CIL”, stand for the specification, cross-validation criterion, average simulated
bias, median simulated bias, simulated root-mean-squared errors, average of the plug-in estimator for the asymptotic variance, 95%
coverage probability, and 95% confidence interval length, respectively. The Hausman-type test statistic is calculated based on (4.2).
Columns “Avg. Test Stats.”, and “Emp. Pow. («)” stand for the average test statistic, and empirical power of the test with a nominal
size «, respectively. See the main text for further details.

First, results in Table 1 suggest that both 7. and 7, are severely biased under this DGP,
while 7y exhibits negligible bias on average. Moreover, among the three sets of estimators
considered, only our proposed estimator attains the correct coverage rate. This result is robust
to the bandwidth selection method. Notably, the performance of the TWFE does not improve
with a fully-saturated specification, indicating that incorporating nonlinear terms into a TWFE
regression does not generally help in identifying heterogeneous treatment effects. In terms of
efficiency, it is worth noting that the asymptotic variance of 7, is close to the semiparametric
efficiency bound, which corroborates the findings of Theorem 2. Regarding the testing perfor-
mance, our Hausman-type test can effectively distinguish between the two nonparametric DiD

estimators with a high degree of certainty, which is in line with our theoretical finding.

10 See Appendix C.3 for a definition of the p*! functions.
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5.2 Simulation 2: stationary covariate distribution

We now slightly adjust the first design by taking the average of propensity scores over time
while keeping all other aspects of the DGP constant. Specifically, we define

p(d,t, X) =P (T =t) (p*(d, 1, X) + p*(d, 0, X)),

where P! (T =t) = E[p*(1,¢,X) + p°*(0,¢,X)]. The treatment groups are then assigned
based on the realization of a standard uniform random variable on the unit interval partitioned
by {p**(d,t, X)}(es. Furthermore, the potential outcomes are determined by (C.15)-(C.17).
Unlike the first DGP, both the covariate distribution and the propensity score function are
stationary in this case. As a result, we anticipate that both 7,4 and 7,, will be consistent for
the true ATT. Furthermore, the empirical rejection rate of the Hausman-type test is expected

to converge to the nominal sizes. The Monte Carlo results under this DGP are summarized in
Table 2.

Table 2: Monte Carlo results under no compositional changes. Sample size: n = 1, 000.

True value of ATT: 9.13. Semiparametric Efficiency Bound: 796.8

Two-way Fixed Effect Estimators

Spec. Avg. Bias Med. Bias RMSE Asy. Var. Cover.  CIL
Tfe  Linear -10.649 -10.672 11.106 9907.607 0.087  12.325
Tpe Saturated -10.563 -10.617 10.946 7924.684 0.048  11.026
Nonparametric Doubly Robust DiD Estimators for the ATT

CV Crit. Avg. Bias Med. Bias RMSE Asy. Var. Cover.  CIL

Tar ML -0.007 -0.020 1.323 1721.037 0.946  5.133
Tar LS -0.010 -0.027 1.328 1732.416 0.946  5.139
Tox ML -0.015 -0.024 0.958 926.689 0.953  3.771
Tex LS -0.016 -0.024 0.958 926.821 0.953 3.771

Hausman-type test

CV Crit.  Avg. Test Stats. Emp. Size (0.10) Emp. Size (0.05) Emp. Size (0.01)

ML 1.045 0.108 0.055 0.009
LS 1.045 0.107 0.056 0.009

Note: Simulations based on 5,000 Monte Carlo experiments. 7y, the TWFE regression estimator, 74, is our proposed nonparametric
DR DiD estimator (3.1), and 7, is the nonparametric DR DiD estimator (4.1) based on Sant’Anna and Zhao (2020). For TWFE
regression, we use a linear specification, “Linear”, and a saturated specification, “Saturated”. For DR DiD estimators, the PS and
the OR models are estimated using a local linear least squares and a local linear logistic regression, respectively. Bandwidth for the
PS function is selected with the log-likelihood criterion, “ML”, and the least squares criterion, “LS”, respectively. Lastly, “Spec.”,
“CV Crit.”, “Avg. Bias”, “Med. Bias”, “RMSE”, “Asy. Var.”, “Cover.”, and “CIL”, stand for the specification, cross-validation crite-
rion, average simulated bias, median simulated bias, simulated root-mean-squared errors, average of the plug-in estimator for the
asymptotic variance, 95% coverage probability, and 95% confidence interval length, respectively. The Hausman-type test statistic
is calculated based on (4.2). Columns “Avg. Test Stats.”, and “Emp. Size («)” stand for the average test statistic, and empirical
size of the test with a nominal size «, respectively. See the main text for further details.

In contrast to the results presented in Table 1, both 7, and 7,, exhibit minimal bias, and
their confidence intervals achieve nominal coverage. Their performance is consistently good
across different bandwidth selection methods. The TWFE estimators, however, continue to
show substantial bias and achieve nearly negligible coverage, despite having much wider confi-
dence intervals compared to the DR DiD estimators. This occurs because the true treatment
effects are heterogeneous, but TWFE specifications do not account for that (i.e., the models are

misspecified). In terms of efficiency, the asymptotic variance of 7, is reasonably close to the
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semiparametric efficiency bound. The asymptotic variance of 7y, is, on average, 2.2 times larger
than the semiparametric efficiency bound (that imposes no-compositional changes), which is
still significantly lower than that of the TWFE estimators. Given that Assumption 3 holds for
this DGP, the null hypothesis is true. The empirical rejection frequency of our Hausman-type
test is nearly identical to its nominal value, highlighting the desirable properties of this testing

procedure.

5.3 Test power

Figure 1: Power curves of the Hausman-type test. Sample Size: n = 1, 000.
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Notes: Simulations are based on 500 Monte Carlo experiments. The bandwidth for the PS function is
selected using LOOCV with two criteria: the log-likelihood criterion (“ML”) and the least-squares cri-

terion (“LS”). The “mean K-L divergence” refers to the population mean of the conditional Kullback-
Leibler divergence between the propensity scores under the local alternatives and the null hypothesis.

In this subsection, we examine the power properties of the proposed Hausman-type test.

Specifically, we consider a sequence of deviations from the null hypothesis, {H ; }?il, where the
PS functions gradually transition from those in Simulation 2 towards those in Simulation 1.

The propensity score functions under these alternatives are generated as follows:
P (dyt, X) = 8% (d, t, X) + (1 — 6%)p2(d, t, X), (5.1)

where 5}1” = 0.05 = j, for j = 1,...,20. All other aspects of the DGP remain the same as in
Simulation 2. The deviation of the sequence of alternative PS functions can be quantified using

the mean Kullback-Leibler (K-L) divergence between P and p2,

5alt
alt alt p (d,t,X)
D ("] p?) = E P (dt, X ) log | 882 | (5.2)
(d’tz)es p2(d,t, X)

Figure 1 presents the power curves for the sequence of local alternatives. It shows that, even
when the mean K-L divergence is as small as 0.015, the empirical rejection frequency of the
5% test is 0.79 (1%: 0.59, 10%: 0.88). Additionally, the empirical power does not vary based
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on the cross-validation criterion used for the PS function: the curves are on top of each other,
making them virtually indistinguishable. This demonstrates that the proposed test exhibits

robust power properties, even under small deviations from the stationarity assumption.

5.4 Bandwidth choices

In this subsection, we present Monte Carlo simulation results comparing three different
bandwidth selection methods: LOOCV (described in Section 3.4), RCV (detailed in Appendix
C.4), and the plug-in estimator (described in Appendix C.5).

Table 3 shows that the plug-in bandwidth estimator, which is based on a frequency approach
for discrete covariates, exhibits significant bias, elevated variance, and lower empirical test power
compared to the other two methods. This is likely due to data sparsity in each stratum when
multiple discrete covariates are present.

In contrast, LOOCV and RCV show no noticeable difference in bias across the three DGPs,
yet LOOCYV demonstrates higher precision, with lower RMSE and shorter confidence intervals.
In the non-stationary setting with 6% = 0, LOOCV reduces RMSE by as much as 10% and
length of 95% confidence interval by 4.3% relative to RCV. In terms of hypothesis testing,
LOOCV attains an empirical size closer to the nominal level under the null, and achieves

higher empirical power in the non-stationary scenario with §%¢ = 1.

Table 3: Monte Carlo results comparing bandwidth selection methods. Sample size: n =
1, 000.

Non-parametric DR DiD Estimators and Hausman-type Test

Non-Stationary Covariate Distribution with ¢ = 0

Avg. Bias Med. Bias RMSE Cover. CIL  Avg. Test Stats. Emp. Rej. (0.10) Emp. Pow. (0.05) Emp. Pow. (0.01)

LOOCV 0.01 -0.021 1.312  0.968  5.306 21.309 1 0.999 0.98
RCV -0.008 -0.028 1.459  0.961  5.543 21.228 0.994 0.991 0.971
Plug-in -2.764 -2.684 13.122  0.939  49.689 1.85 0.238 0.155 0.054

Non-Stationary Covariate Distribution with §%* = 0.5

Avg. Bias Med. Bias RMSE Cover. CIL  Avg. Test Stats. Emp. Rej. (0.10) Emp. Pow. (0.05) Emp. Pow. (0.01)

LOOCV 0.014 0.01 1.363  0.953  5.258 6.211 0.742 0.627 0.378
RCV -0.029 -0.08 1434 0968 5.423 6.497 0.745 0.643 0.44
Plug-in -1.49 -1.882 12,52 0.953 48.172 1.364 0.167 0.085 0.025

Stationary Covariate Distribution with 6% = 1

Avg. Bias Med. Bias RMSE Cover. CIL  Avg. Test Stats. Emp. Rej. (0.10) Emp. Pow. (0.05) Emp. Pow. (0.01)

LOOCV 0.021 -0.027 1.268  0.958  5.131 1.027 0.104 0.052 0.004
RCV -0.053 -0.109 1282  0.96  5.229 1.06 0.109 0.055 0.009
Plug-in -0.392 -0.424 12.091  0.95  46.657 1.212 0.136 0.076 0.019

Note: Simulations based on 1,000 Monte Carlo experiments based on the three DGPs in Section 5.3, with §** = 0,0.5,1. Columns “Avg. Bias”, “Med. Bias”, “RMSE”,
“Cover.”, and “CIL” refer to the average simulated bias, median simulated bias, simulated root-mean-squared errors, 95% coverage probability, and 95% confidence inter-
val length for our proposed nonparametric DR DiD estimator, 74, as defined in (3.1). Bandwidth selection is performed via leave-one-out cross-validation (“LOOCV?),
rescaled cross-validation (“RCV”), or a plug-in estimator (“Plug-in”), with the first two methods using the log-likelihood criterion in (3.13). The Hausman-type test
statistics are computed according to (4.2). Columns “Avg. Test Stats.”, and “Emp. Size («)” denote the average test statistic, and empirical size of the test with a
nominal size a, respectively.
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6 Empirical illustration: the effect of tariff reduction on

corruption

In this section, we revisit a study from Sequeira (2016) on the effect of import tariff lib-
eralization on corruption patterns. Prior to the phaseout of high tariffs between South Africa
and Mozambique, bribery payment was pervasive, often used to dodge tariff taxes. According
to Sequeira and Djankov (2014), bribery payments can be found in approximately 80% of all
shipment records in a random sample of tracked shipments before a tariff rate reduction in
2008.

This tariff change is the result of a long-standing trade agreement between South Africa and
Mozambique. The agreement, the Southern African Development Community Trade Protocol,
was signed in 1996. The protocol established a timeline for import tariff reductions between
2001 and 2015. The most significant reduction occurred in 2008, with the average nominal rate
decreasing by 5%. The effect of such a tariff liberalization scheme is considerable, as both the
likelihood and the amount of bribe payments experienced a significant decline following the
phaseout.

To investigate the causal relationship between tariff rate reduction and changes in bribery
patterns, Sequeira (2016) leverages a quasi-experimental variation induced by trade protocol:
Not all products were subject to the change in tariff rate during the analysis period, enabling
products unaffected by the tariff changes to serve as a control group. It is thus possible to utilize
the DiD design to analyze how tariff rate changes affect bribe patterns along trade routes.

Sequeira (2016) collects data on the bribe payment along the trade routes between the two
countries from 2007 to 2013. This data set has a repeated cross-section structure. Sequeira

(2016) mainly considers the following two TWFE regressions:

(Linear)  y;; = MTCCi x Post + pPost + % TCCi + BoBT; + Ty + p; + wy + 6; + €5,
(Interactive)  y; = 11 TCCi x Post + pPost + TCCi + BT, + T'; + T'; x Post
+pi + w4 0 + €,

where T'CC; and BT; denote Tariff Change Category and Baseline Tariff, respectively, and y;; is
one of the measurements of bribery payments for shipment 7 in period t. T'C'C' is the treatment
indicator, which takes value one if the product shipped experienced a tariff reduction in 2008,
and zero otherwise. The post-treatment period indicator, Post, is equal to one for the years
following 2008. BT refers to the tariff rates before 2008. A vector of covariates, I', industry,
year, and clearing agent fixed effects, p,w, d, are also included in the regressions. The interactive
specification differs from the linear one by an interaction of Post and the covariates, I'.
Sequeira (2016) focuses on interpreting <, in both specifications as an estimate of the
ATT. However, this interpretation might not be valid when treatment effects are heteroge-
neous (Meyer, 1995; Abadie, 2005). Our proposed DR DiD estimator, 7,4, and the one based
on Sant’Anna and Zhao (2020), 7s, could be better suited for the task of identifying and con-
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sistently estimating the ATT in the present context. In what follows, we estimate the ATT
using our proposed DR DiD estimator and compare the results to those obtained by Sequeira
(2016).

To achieve this, we first estimate the PS and OR functions based on local linear logistic
regression and local linear OLS, respectively. Following Sequeira (2016), we consider four
different outcome measures: a binary variable denoting if a bribe is paid, the logarithmic
form, log(z + 1), of the amount of bribe payment, the logarithmic form of the amount of
bribe paid as a share of the value of the shipment, and as a share of the weight of the shipment,
respectively. Across all four specifications, we include the following common covariates: baseline
tariff rate, dummy variables for whether the shipper is a large firm, whether the product is
perishable, differentiated, an agricultural good, whether the shipments are pre-inspected at
origin, monitored, and originates from South Africa. Additionally, we include the day of arrival
during the week and the terminal where the cargo was cleared. Our procedures allow for these
covariate-specific trends, so the CPT Assumption 2(i) holds only after accounting for these
observed characteristics. To avoid weak-overlap problems, we truncate PS estimates below
0.01.

Table 4 summarizes our results. For each estimator, we report both the unclustered standard
errors based on asymptotic approximation (in parentheses) and the cluster-robust standard
errors based on the bootstrap procedure in Algorithm C.2 (in brackets), where we cluster at
the four-digit HS code level as in Sequeira (2016). Likewise, we conduct two sets of Hausman-
type tests — one using unclustered influence functions based on (4.2) and the other that accounts
for clustering using a bootstrap procedure given in Algorithm C.3.

We first observe that the point estimates are negative for all measures of bribery payment,
consistent with the findings of Sequeira (2016). The results based on the two DR DiD methods
are generally close to the TWFE estimates with the interactive specification. For instance, we
find that a tariff reduction reduces the probability of paying a bribe by 28 to 43 percentage
points, depending on the specific estimator used. The result is statistically and economically
significant at the usual levels. Tariff reduction also seems to lead to a decrease in bribery.!!
The magnitude of the causal effects based on the weighted results, on the other hand, is more
mixed.'? Results based on the TWFE and DR DiD with no-compositional changes estimators
suggest that tariff reduction leads to a statistically significant reduction in the average log
of the ratio between bribery payment and shipment values of similar magnitude, while our
proposed DR DiD estimator that is robust to compositional changes suggests a twice-as-large
effect. When the log of the ratio between bribery payment and tonnage is considered, both
nonparametric DR DiD estimators report large yet insignificant (at 95% level) ATT estimates.

11 Some of local linear OR estimates were a bit sensitive to bandwidth choice. This is arguably due to the
limited number of observations within certain strata. To improve the stability of cross-validation, we impose
a common bandwidth across all four treatment groups for each type of covariates.

12 We avoid attaching a precise interpretation of these log transformations due to the issues raised by Chen and
Roth (2023).
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Table 4: Difference-in-differences estimation results for Sequeira (2016)

Estimator/Outcome Prob(bribe) Log(1 + bribe) Log(1 + bribe/shpt.val.) Log(1 + bribe/shpt.tonn.)
TWEFE - Linear Spec. -0.429 -3.748 -0.011 -1.914
(0.083) (0.724) (0.003) (0.341)
[0.131] [1.064] [0.003] [0.496]
TWFE - Interactive Spec. -0.296 -2.928 -0.010 -1.597
(0.082) (0.746) (0.004) (0.402)
[0.124] [0.917] [0.004] [0.457]
DR DiD 7, -0.275 -2.542 -0.014 -0.918
(no-compositional changes) (0.067) (0.636) (0.005) (0.451)
[0.096] [0.773] [0.006] [0.492]
DR DiD 7, -0.307 -2.888 -0.027 -1.131
(robust to compositional changes) (0.084) (0.798) (0.010) (0.602)
[0.109] [0.915] [0.014] [0.635]
Hausman-tests for no-compositional changes
Unclustered p-value 0.270 0.199 0.084 0.601
Clustered p-value 0.338 0.238 0.175 0.643

Notes: Same data used by Sequeira (2016). The results represent the estimated ATT of tariff rate reduction on bribery payment behavior. Columns 2
through 5 denote estimates for dependent variables representing whether a bribe is paid, the logarithmic form, log(x + 1), of the amount of bribe paid,
the logarithmic form of the amount of bribe paid as a share of the value of the shipment, and as a share of the weight of the shipment, respectively.
We compare four different DiD estimators for the ATT: 1. the two-way fixed effect estimator based on specifications in Column (1) of Tables 8-11 in
Sequeira (2016); 2. the two-way fixed effect estimator based on Column (2) from Tables 8-11 in Sequeira (2016); 3. DR DiD estimator based on (4.1),
and 4. DR DiD estimator based on (3.1). The same set of covariates is used for the last two estimators. See the main text for further details on the
covariates. Continuous variables are re-scaled between 0 and 1, and then added in with binary variables. For DR DiD estimators, the PS and the OR
models are estimated nonparametrically, using a local linear least squares and a local linear logistic regression, respectively. Bandwidth for the local
linear logistic regression is selected with the log-likelihood criterion. Numbers in the parentheses are unclustered standard errors based on asymptotic
approximation. Numbers in brackets refer to standard errors clustered at the level of four-digit HS code. Cluster-robust standard errors are calculated
following Algorithm C.2 with 9999 bootstrap draws. Hausman-tests are calculated based on (4.2). The clustered p-values are calculated following the
bootstrap procedure in Algorithm C.3 with 9999 bootstrap draws. To avoid weak-overlap problems, we truncate PS estimates below 0.01.

The results of the Hausman-type test displayed at the bottom of Table 4 suggest that we lack
statistical evidence against the assumption of no-compositional changes, especially when one
clusters the standard errors.

In sum, our results support the conclusion of Sequeira (2016) that tariff liberalization de-
creases corruption. Our DR DiD estimates suggest the size of the effects is approximately the
same as that of the original paper, indicating that ruling out treatment effect heterogeneity

and compositional changes are not of primary concern in this particular application.

7 Extensions

We conclude the paper by considering two extensions of our main results: the use of cross-
fitted first-step estimators, and the analysis of setups with rotating panel data structures where

some units are observed in both pre- and post-treatment periods.

7.1 Cross-fitted first-step estimators

We describe a cross-fitting procedure for generic first-step estimators. Let J be a fixed
positive integer such that J < N, and assume for simplicity that n; = n/J is an integer.
Randomly split the dataset into J equal groups (folds) of size n;. Denote the set of indices for
the j-th group by J;, and let 3_; = {1,...,n}\J, represent the indices for all observations except

those in the j-th group. For each j, construct the first-step estimators (ﬁj, {ﬁld,w}(d’t)eg_) using
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data from all folds except the j-th fold, i.e., {Wi}ies_;.

The cross-fitted doubly robust estimator, ?gf 7, 1s then defined as:

?;{J Z Z ’LU11 DHT)TJ(Y;vX) Z (_1)(d+t)ﬁ}d,t,j(Di’Tini)(Y; - 73>Ld,lt,j()(i>> )

" i Tlie, (d,t)eS—

(7.1)

where  H(V.X) =Y 4 S (()ag(X)  and da(X) =
%/((}_1 Z}]:1 E, ; [%D . Here, E, ;[-] represents the sample average
over the observations in j-th fold.

Let (Tn.dt)n>1s (Sn.dt)n>1, and (e],)n>1, be sequences of positive constants approaching 0. We

make the following low-level assumptions regarding the cross-fitted estimators.
Assumption 6 (Cross-fitted nuisance estimators)

1. For any j € {1,...,J}, the nuisance estimators (p;, {May;}aes ) constructed using
(Wi)ies_, belong to the realization set J, = JP x J;* with probability no less than
1 —¢),. The sets JP and J" include the true nuisance functions and satisfy the following

constraints:

(7’ Suppejn Hp( ’ 7‘) _p<7 K ')“LQ < /r.nvdvt'

(7)) supmegm [[Mar(-) —mar()ll L, < Snae for (d,t) € S-.

(199) Tndas - Snas = o(n~Y2) and 7,11 - Spas = o(n~Y?), for (d,t) € S_.

)
)
)
(iv) 0 < infoe [(d, t,2)] < sup,cy [(d,t,2)] < 1, for (d,t) € S.

2. Var[Y|D =1,T =1] < 0 and Var[Y|D = -,T = ¢, X = x| is bounded uniformly over
X, for (d,t) € S_.

Lemma 7.1 (Doubly robust error rate with cross-fitted estimators)

Suppose that Assumptions 1, 2, and 6 are satisfied. Then,
vn <7’;7{J ) Zneg )+ 0,(1) 4 N(0,Qq4,). (7.2)

Due to the cross-fitting procedure, Assumption 4.2 simplifies to Assumption 6.1. This
assumption now requires that the cross-fitted nuisance estimators converge to their true values
in mean square. However, similar to the generic case, Lemma 7.1 still imposes the requirement
that the product of first-stage approximation errors converge at a rate faster than O, (n_l/ 2).

Compared to verifying convergence rates for a generic estimator, establishing the mean
convergence rate in this specific context is relatively straightforward. Established results provide
Lo-rate conditions for a wide range of nonparametric and machine learning estimators, including
kernel and series estimators, as well as methods like Lasso, ridge regression, random forests,

boosted trees, deep neural networks, and their ensembles. Although not formalized in this
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paper, Lemma 7.1 can be extended to accommodate high-dimensional confounders, where the
dimensionality of the nuisance functions increases with the sample size. This setting violates
traditional assumptions, such as Donsker properties, on the complexity of the nuisance function
space. For a comprehensive discussion of these challenges, refer to Chernozhukov et al. (2017)
and references therein.

It is important to note that cross-fitting in the current setup can be challenging when the
data size is limited. Since the data for each of the four treatment groups must be split into
J folds, larger values of J result in fewer observations per fold, thereby increasing estimation
error. Another important caveat is that the semiparametric efficiency results may not hold
in high-dimensional covariate spaces, a topic we do not cover in this paper. For a detailed

discussion of this limitation, see, for example, Jankova and Van De Geer (2018).

7.2 Overlapping cross section

While the primary focus of this paper is on repeated cross-sectional data where units are
observed exclusively in either the pre-treatment or post-treatment period, as per Assumption
1, we recognize that some practical settings involve overlapping cross-sections. For example,
surveys like the Current Population Survey (CPS) and the Consumer Expenditure Survey
(CEX) employ rotating panel designs. In these surveys, a fraction of the respondents contribute
to longitudinal data, appearing in both the pre-and post-treatment periods, while the remaining
respondents are observed in only one of the two periods.

In the CPS, households are surveyed for four consecutive months, excluded for the following
eight months, and then surveyed again for four more months. Similarly, the CEX follows a
rotating panel design where housing units are interviewed once per quarter for four consecutive
quarters before being replaced. These designs result in datasets with a mix of panel data and
repeated cross-sectional data, where some units overlap across periods, while others are unique
to specific periods.

Compared to our assumed sampling process, this structure introduces an additional layer
of complexity due to the mixture of unit types. Specifically, let R = 1 indicate a panel subject
(a unit with data from both pre- and post-treatment periods). The observed data is now
W = (RYy, RY1, (1 — R)Y, (1 — R)T, D, X, R), which is described by the following mixture

distribution:

P(1-R)Y <y,RY1 <y, RYs <4,(1—-R)T=t,D=d,R=r,X <zx)=
T]P)(R = 1) Pp(thyOadaI) + (1 —T’) P(R = O) Prc(y7d7t7x)7 (73)

where

Pp(ylaymd:x) :IED(K <y17%<y07D:d,X<ZE|R= ]_),
PTC(y7d7t7$) :P(ng,Dzd,th,X<$|R:O)
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The ATT under this setup is defined as
7 =P(R=1)E[Vi(1) = Y1(0)|D =1,R =1] + P(R = 0)E[Y1(1) = V1(0)|D = 1,T = 1, R = 0].
The following conditions are imposed to identify the ATT.
Assumption 7 (Identification assumptions under overlapping cross sections)

1. The observed data {W?¢}?_, consists of i.i.d. draws from the mixture distribution defined
n (7.3).

2. For some ¢ > 0, (d,t) € S_, and for almost every z € X,

(r—i) EVi(0) = Yo(0)|D = 1, R = 1,X = 2] = E[¥1(0) — Yo(0)|D = 0,R = 1,X = ]

(p—ii)P(D=1R=1)>¢, andP(D=1R=1,X=2)<1—¢.

(re—i) E[Yi(0)|D=1,T=1,R=0,X = 2] — E[Yp(0)|D = 1,T = 0,R = 0, X = 1]
—E[V;(0)|D=0,T=1,R=0,X = 2] — E[Yp(0)|D = 0,7 = 0,R = 0, X = x].

(re—1u) E[Yo(0)|]D=1,T=0,R=0,X =2 =E[Yo(1)|[D=1,T=0,R=0,X = z|.

(re—iii) P(D=1,T=1R=0)>¢, and P(D=d,T=tR=0,X =2) >e.

This new identification assumption amounts to combining the conditions imposed on the
panel units (Assumption 2 in Sant’Anna and Zhao (2020)) with those imposed on the cross-
sectional units (Assumption 2).

The EIF and semiparametric efficiency bound can be derived using arguments analogous to

those in Theorem 1. Before presenting our results, we introduce the following quantities:

A}/:}/1_}/07
p(z)=P(D=1R=1,X=2), pd,t,z) =P(D=d, T=t|R=0,X =x),

D (1—D)~p1(X)/ [(1—D)-p1(X) ]
w)(D) = —————, wh(D,X) = E R=1]|,
P =gpr=1 Y=o T (X)
mSA(X) =E[AY|D =d,R =1, X], T;C = E[mll’vA(X) — mgvA(X)|D =1,R=1],

DT Idt'p0<1717X) [dt'p0(1717X>
DT e — DT, X ’ E ’ R=0
DD = gippr =gy e = X po(d.t, X) ’
mg,ct(X) = E[Y|D = daT = taR = O,X], TrocC(Yv X) =Y — Z (_1>(d+t)m2,ct(X)a
(d,t)eS—

Tre = E[r2(Y,X)[D=1,T=1,R =0].
In addition, let
np(Y1,Yo, D, X) = {w} (D) (m} A(X) — m§ A(X) — 75°)

+wi(D)(AY —mf A (X)) — wf(D, X)(AY —mf 5 (X))},
Tre)

Nre(Y, D, T, X) =w( (D, T)(72(Y, X) — 725) + (=)D (D, T, X)(Y — my (X)),
(d,t)eS—
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nr(R) = (R - E[RD ’ (Toc - chc)v

p

and

Ve =E[D|R = 1] - E[D(m} ,(X) — mj A(X) — 75
(1-D)-pi(X)?
(1 —p(X))?

Vo =E[DT|R=0]" E[DT(r%(Y, X) — 75°)?

D(AY —mf A(X))* +

(AY —mf (X)) IR =1].

I (1,1, X)2
ooy B Sy ) R =0

(d,t)es— po(d, 1, X)?
Ve = Var[R] - (ry° — 00)%

Theorem 4 (Semiparametric efficiency bound under overlapping cross sections)

Suppose Assumption 7 holds.

(a) The EIF for the ATT, 7°" is given by,

noc(WOC) =R- np(}/l,%,D,X) + (1 - R) : nrc(}/a D,T,X) + nr(R)

(b) Furthermore, the semiparametric efficiency bound for the set of all regular estimators

of 7°¢ is
E[noc(W*)?] = E[R] - V?° + E[1 — R] - V¢ + V.

The EIF comprises three parts. The first two correspond, respectively, to the EIF for
panel-only data (as derived in Proposition 1(a) of Sant’Anna and Zhao (2020)) and the EIF
for cross-sectional-only data (as derived in Theorem 1 of our paper). The third component
directly quantifies the relative effect of assignment to the panel units on average and reflects
the efficiency cost associated with combining the two data types.

Interestingly, the semiparametric efficiency bound decomposes into three distinct terms,
each reflecting the independent contribution of a different component of the EIF. Notably,
when the two data sources share the same true ATT (e.g., when there are no compositional
shifts between different sampling cohorts over time), the third term vanishes.

Leveraging this result, we propose the following DR estimand for the ATT:

Tar =E [R' (@U}f(D) (m]i),A(X) - mg,A(X))
+wi(D)(AY —mj A(X)) — wi(D, X)(AY —mf A(X)))

(1= R)- [ wiy(D,T)r (Y, X) + 3 (=) (D, T, X)(Y —myg (X))
(d,t)eS—

Since 75° is based on the EIF, it is straightforward to show that plug-in estimators for the

ATT based on 75¢ inherits the same rate doubly robust property as established in Theorem 2.
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Adapting our paper’s arguments in Theorem 2 to show these results is straightforward. We

omit the details for brevity.
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